液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx

上传人:b****1 文档编号:23174339 上传时间:2023-05-15 格式:DOCX 页数:10 大小:61.70KB
下载 相关 举报
液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx_第1页
第1页 / 共10页
液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx_第2页
第2页 / 共10页
液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx_第3页
第3页 / 共10页
液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx_第4页
第4页 / 共10页
液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx

《液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx》由会员分享,可在线阅读,更多相关《液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx(10页珍藏版)》请在冰豆网上搜索。

液态氮+差分式低温冷凝泵的设计EAST NBI用差分式低温冷凝泵的设计.docx

液态氮+差分式低温冷凝泵的设计EASTNBI用差分式低温冷凝泵的设计

1千帕相当于102毫米水柱。

所以一毫米水柱=1/102千帕,15毫米水柱等于147帕.

液态氮

氮气

产品名称执行标准技术标准(V/V)≥氧含量

ppm≤氢含量

ppm≤CO+CO2+CH4

ppm≤水份含量}

液态氮GB/T8980-9699.999212不规定水含量

性状:

无色、无臭、无味、几乎完全隋性气体、氮不可燃

物性:

密度1.25kg/m3(0℃、气体)、804kg/m3(-183℃、液体)

熔点-210℃;沸点-195.8℃;临界温度-147℃;临界压力3.39Mpa

用途:

食品冷藏、冶金工业、洗涤及保护气、用于气体激光器、空份设备、电力输送和废物处理

注意事项:

它是一种使人窒息的气体、液氮为低温会对人造成冻伤、不可与皮肤接触。

液态氮为无色、无味,不易燃烧,不会爆炸,沸点是—196摄氏度。

处置

1.此物质是冷冻液体,于封闭地区会产生很大的危险,需要工程控制及防护设备,工作人员应适当受训并告知此物质之危险性及安全使用法。

2.工作区应通风良好以避免缺氧。

3.若在封闭区域使用液态氮,应小心遵循所有安全程序。

4.安装连续式空气侦测器以决定是否适当的通风。

5.不要与不兼容物一起使用(如镁),会起激烈反应。

6.装填液态氮容器的颈部避免被冰堵住。

7.小心运送装填冷冻液的容器。

8.以专用推车或手推车搬运。

9.钢瓶直于地板且固定于墙壁或柱子。

10.钢瓶不可滚、拖、丢或者让它们碰撞在一起。

11.若必须以升降机运送冷冻液,采取适当措施以预防可能的伤害,如升降机没有其它乘客。

12.当转换冷冻液至其它容器,接收容器须预冷,转运过程初期应缓慢,冷冻液挥发而使接收容器变冷。

13.若要将物体放入冷冻液中,必须很缓慢以减少冷冻液沸腾或飞溅。

14.许多常用物质如碳钢、塑料和橡胶.,液态氮存在下的低温变脆而容易破裂,或收缩而使接头出现裂缝。

15.所有装填液态氮的容器和管线应有适当释压装置以避免压力过高。

16.须备随时可用于火灾及溢泄的紧急处理装备。

17.查阅液态氮的相关法规。

EAST-NBI用差分式低温冷凝泵的设计

  为了维持EAST-NBI内的真空环境以满足中性束生成与传输过程对真空压力分布的要求,设计了EAST-NBI用差分式低温冷凝泵。

本文概述了中性束注入加热的原理以及EAST-NBI真空系统的组成,详细阐述了EAST-NBI用差分式低温冷凝泵的结构设计,抽速和冷凝面积的确定,液氦系统和液氮系统热负荷的计算等关键问题。

该差分式低温冷凝泵通过在EAST-NBI综合测试台上进行大量实验验证,完全满足EAST-NBI对真空系统的要求。

  中性束注入加热(neutralbeaminjection,简称NBI)主要是利用注入的高能中性粒子束在等离子体中的电离、热化,最终把能量转化成等离子体的内能,从而提高等离子体温度。

中性束传输过程所需真空环境由真空获得设备来实现。

低温冷凝泵同其它真空获得设备相比具有真空洁净、极限真空度高、有非常大的抽速、适用于气体负载大的场合、占地面积少、布置灵活、无振动、无噪音、寿命长、结构简单等优点。

为了获得满足EAST-NBI所要求的大气体负载下的洁净真空环境,考虑到空间有限、电磁环境恶劣等情况,EAST-NBI选用低温冷凝泵作为主要真空获得设备。

  EAST-NBI的真空系统由分子泵机组构成的辅助抽气系统和由低温冷凝泵构成的主抽气系统所组成。

EAST-NBI系统不同部位对真空度的要求不一样,为了满足其对束线内部压力梯度分布的要求,EAST-NBI主抽气系统采用差分抽气结构,即用两台不同抽速的低温冷凝泵分别布置于主真空室第一段和第三段。

为实现差分抽气,在真空室内部不同部位设置低温冷凝泵的同时,分两处设置气体挡板以增大气体流阻。

为了提供中性化室所需的真空环境,布置于主真空室第一段的主低温冷凝泵呈圆环形,以与束线圆形真空室同轴的方式布置在中性化室部位,在主低温冷凝泵与偏转磁体间设置专门的气体挡板,挡板中间留有供束通过的孔。

布置于主真空室第三段的低温冷凝泵称为差分式低温冷凝泵,主要功能是满足束传输过程对真空室内部压力梯度分布的要求,该泵布置于偏转磁体面向聚变装置一侧,呈圆饼状,中间留有供束通过的孔,在抽气的同时亦能起到气体挡板的作用。

两处气体挡板将EAST-NBI主真空室的内部空间分为三部分。

如图1所示。

图1束生成与传输中的典型真空压力分布要求

  EAST-NBI工作气体为氘气,本文主要介绍布置于主真空室第三段的差分式低温冷凝泵的结构设计和相关计算。

1、差分式低温冷凝泵的结构设计

  作为低温真空系统主要部件的低温冷凝屏,其基本结构决定于被抽气体种类和安装使用条件,考虑到EAST-NBI低温真空系统的主要气体负载为氘气,为达到有效抽气的目的的同时有良好的运行经济性,低温冷凝泵总体上设计为由低温冷凝板和防辐射挡板(简称辐射挡板)组成。

低温冷凝板的主要功能是利用冷凝抽气机理抽除来自真空系统各气源的气体;辐射挡板的主要功能是吸收来自高温壁面的辐射热并冷却到达低温冷凝板的气体。

  根据EAST-NBI对低温冷凝泵主抽气系统的要求,并考虑到主真空室内部空间条件,设计的差分式低温冷凝泵有三层结构,呈圆饼状,以与中性束传输方向垂直的方式布置在主真空室第三段。

如图2所示。

该低温冷凝泵的中间一层为低温冷凝板,其上设置了依靠真空钎焊固定的低温管道。

为吸收高温壁面的辐射热,冷却到达低温冷凝板的气体,在低温冷凝板的两侧分别布置了由液氮冷却的辐射挡板。

  对多种形状挡板的传输几率和透射系数进行综合考虑后,该挡板选取夹角为120°、表面采用黑色油漆喷涂的人字形挡板。

此外,按EAST-NBI的总体设计规划,在该低温冷凝泵的中心还须预留放置功率测量靶及束流通过的孔。

图2差分式低温冷凝泵结构示意图

  EAST-NBI低温冷凝泵的低温冷凝板所需要的冷量依靠低温中心的氦制冷机系统提供,辐射挡板所需要的冷量由低温中心的液氮贮罐输送的液氮提供。

低温冷凝泵正常工作所需要的冷量通过专门设计的冷量输送管道输送至低温冷凝泵的相应接口,受热汽化后的氦气回到低温中心的氦制冷机系统,氮气则直接排放至大气。

  EAST-NBI低温冷凝泵工作在强磁场和有粒子辐照的环境中,故在材料的选取上除了要考虑其低温真空条件的性质,还要具有一定的抗磁性。

综合考虑以上要求,人字形挡板选用6061-T6铝合金。

液氮管和人字形挡板采取焊接连接,同时考虑液氮管的弯曲等问题,液氮管选用1060铝。

液氦低温冷凝板应具有较高的传热系数,经综合考虑选用无氧铜制作。

考虑到材质和焊接工艺等因素,为避免加工成型后的冷漏,液氦管道选用304不锈钢制作。

2、差分式低温冷凝泵的设计计算

2.1、低温冷凝泵的性能参数设计

2.1.1、低温冷凝泵的抽速确定

  EAST-NBI用低温冷凝泵抽速对NBI运行条件下的动态真空环境产生直接影响,合理选择低温冷凝泵抽速将确保该低温真空系统在满足NBI对真空压力分布要求的前提下有较好的经济性。

低温冷凝泵抽速的确定主要取决于气体负载的大小和系统对动态真空度的要求。

EAST-NBI主真空室每段动态真空压力分别为:

1×10-2,4×10-3,1×10-3Pa。

主真空室二段内的气体负载主要来源自主真空室一段进入的气体量、偏转磁体和离子吞食器进出口束流限制器处因束功率的沉积而产生的气体量、离开主真空室二段进入三段的气体量;主真空室三段内的气体负载主要来源于自主真空室二段进入的气体量、漂移管道进出口束流限制器处因束功率的沉积而产生的气体量、离开主真空室三段经漂移管道进入EAST的气体量。

经综合考虑,布置于主真空室第三段的差分式低温冷凝泵面向偏转磁体一侧需要具有的抽速至少为2.2×105L/s;面向漂移管道一侧需要具有的抽速至少为2×105L/s。

  根据EAST-NBI总体设计规划,该差分式低温冷凝泵对氘的总抽速确定为4.5×105L/s。

2.1.2、低温冷凝面积的确定

  泵的抽速等于在入口压强p和温度T下被抽气体的体积流量。

根据比抽速式

(1)

  计算可得S'=7.732×104L/s。

其中W=0.26为,人字形挡板的传输几率;A=0.97,为低温冷凝泵的凝结系数;C=0.01,为低温冷凝泵的再蒸发几率;T=290K,为被抽气体的温度;M=4kg/kmol,为气体摩尔质量。

由前所述,此差分式低温冷凝泵对氘抽速为4.5×105L/s。

经计算,该低温冷凝泵所需要的总有效抽气面积为5.82m2,低温冷凝面的单面有效抽气面积为2.91m2。

2.2、低温冷凝泵热负荷的计算

2.2.1、液氦系统的热负荷

  液氦系统的热负荷主要包括人字形挡板对低温冷凝板的辐射热,穿过人字形挡板透射到低温冷凝面的热负荷,气体负载冷凝的热负荷,液氦低温冷凝板支撑件的导热量,气体的热传导。

除此之外,液氦系统的热负荷还包括经温度测量导线的漏热,但由于在实际的安装过程中采用增加长度、安装热沉等处理措施,由其带给低温冷凝板的热负荷可予以忽略。

  

(1)人字形挡板对低温冷凝板的辐射热

  式中,eb=0.9,为100K人字形挡板的辐射系数;ek=0.2,为4.5K液氦低温冷凝板的辐射系数;fb=[1+Akek(e-1b-1)/Ab]-1;Ak=5.82m2,为液氦低温冷凝板的有效辐射面积;Ab=5.82m2,为人字形挡板的有效辐射面积;R=5.67×10-8W/(m2.K4);Tb=100K,为人字形挡板的温度;Tk=4.5K,为液氦低温冷凝板的温度。

经计算可得Q1=6.456W。

  

(2)穿过人字形挡板透射到低温冷凝面的热负荷

  式中,tp=0.0007,为人字形挡板的透射系数;Tq=290K,为穿过人字形挡板的气体温度;其他参数同上。

经计算可得Q2=0.327W。

  (3)气体负载冷凝的热负荷

  气体负载冷凝的热负荷是与每秒入射Ak面上的分子数成比例的。

由式(4)得

  式中,S=4.5×105L/s为低温冷凝泵的抽速;p=1×10-3Pa为气体压强;$H(TbyTk)=3.183kJ/mol,为单位摩尔的热焓;R=8.31425J/(mol.K),为气体普适常量;Tq=290K,为气体负载的温度。

经计算可得Q3=0.594W。

  (4)液氦低温冷凝板支撑件的导热量

  式中,Aj=30mm2,为支撑件的截面积;L=250mm,为支撑件的长度;K为支撑件的导热系数,K=3.787+0.024T;Th=100K,为支撑环的温度;其它参数同上。

经计算可得Qc4=0.058W,Q4=10×2×Qc4=1.155W。

  (5)气体的热传导

  经过人字形挡板的未被低温冷凝板冷凝的气体对低温冷凝板的热传导可用式(6)计算

2.2.2、液氮系统的热负荷

  液氮系统的热负荷主要包括真空室器壁对人字形挡板的辐射热,气体的热传导,液氮低温冷凝板支撑件的导热量。

除此之外,液氮系统的热负荷也包括经温度测量导线的漏热,但由于在实际的安装过程中采用和液氦系统同样的处理措施,故这部分的热负荷可以忽略不计。

  液氮系统热负荷与液氦系统热负荷的计算方法相同,可算得液氮系统的热负荷为

QLN2=Q1+Q2+Q3=209.561W

2.2.3、液氦、液氮的消耗率

  

(1)液氦的消耗率

  根据相关文献,液氦的汽化潜热r=20.8kJ/kg,Q=0.125g/cm3,则每小时消耗的液氦量为

VLHe=3.6Q/Qr=12.715L/h

  

(2)液氮的消耗率

  根据相关文献,液氮的汽化潜热r=199kJ/kg,Q=0.808g/cm3,则每小时消耗的液氮量为

VLN2=3.6Q/Qr=4.692L/h

3、低温冷凝泵的实验验证

  EAST-NBI综合测试台是为了对用于EAST装置的NBI进行性能测试并进行相关物理实验而建的。

该综合测试台与EAST-NBI以1:

1尺寸建造,目前已建造完成,并于2011年12月和2012年3月进行了两轮束引出实验。

为了更加形象的表达该差分式低温冷凝泵的实验验证过程,从DL-7真空计上截取一幅2012年3月份实验中主真空室三段压力随时间的变化图,如图3所示。

横坐标为实验具体时间(每一间格为4min),纵坐标为主真空室三段实际压力值。

图3左上角部位的压力值为主真空室三段实验当前压力,图像的水平过程线为主真空室三段的压力平衡线,主真空室三段压力每一次从平衡压力升高至峰值都是由于离子源进行一次进气起弧放电产生的,压力在具有很大抽速的低温冷凝泵作用下用很短时间又从峰值恢复到平衡压力。

由图可知,压力由峰值恢复到平衡压力的过程中,主真空室三段的动态真空压力一直保持在10-3Pa量级以下,保证中性束注入实验的顺利进行,完全满足EAST-NBI对动态真空压力的要求。

图3NBI实验时主真空室压力变化图

4、结论

  

(1)本设计使用真空钎焊的焊接方式,可以防止无氧铜在焊接过程中氧化影响焊接效果,可以使焊料均匀分布在液氦低温管道与低温冷凝板之间,从而提高低温冷凝面的抽气性能;人字形挡板采用黑色油漆喷涂的方式可以提高吸收高温壁面的辐射热。

  

(2)经计算,液氦系统的热负荷为9.183W,液氦消耗量为12.715L/h;液氮系统的热负荷为209.561W,液氮消耗量为4.692L/h。

这为低温中心进行低温系统设计及系统优化提供参考。

  (3)本文所设计的差分式低温冷凝泵在EASTNBI综合测试台上进行了大量的真空抽气实验,主真空室三段动态真空压力始终保持在10-3Pa量级以下,满足EAST-NBI对动态真空压力的要求,这为EAST-NBI实验研究提供必要的前提条件。

  本文EAST-NBI用差分式低温冷凝泵的设计为真空技术网首发,转载请以链接形式标明本文地址。

冷藏车制冷方式有多种,如下5种是较常的制冷方式:

  1.水冰及盐冰制冷:

大气压力下,冰的融点为0℃冰融化时的吸热为334.8kJ/kg,水冰中添加盐类可降低其融点。

一定范围内,水冰中盐的成分越多,则融点越低。

实验证明,当加入食盐的质量为水冰质量的29%时,其混合物的融点可达到最低值-21.2℃.若再增加盐分,则融点不再下降。

通常是根据冷藏货物的运输适温来选择不同成分的盐冰。

例如采用含盐量为22%的盐冰,车厢内温度可保持在-18~-13℃水冰制冷装置投资少,运行费用低,但是普通水(盐)冰单位质量的吸热量较小,车厢内降温有限。

此外盐冰融化后会污染环境、食品,腐蚀车厢和值货物受潮.因此水(盐)冰制冷主要月于鱼类等水产品的冷藏运输,

2.干冰制冷:

  一个大气压力下,干冰(固态CO2升华温度低(-78.9℃)升华吸热量大(573.5kJ/kg故将它作为车厢冷源,不只可以获得较低温度(一般低于-20℃而且可获得较大的制冷量。

因此该制冷方式适于冷冻食品的运输。

  干冰升华产生的COZ气体能抑制微生物繁殖、减缓脂肪氧化以及削弱水果蔬菜的呼吸,且消耗量较大,干冰制冷装置简单、投资和运行费用较低、使用方便、货物不会受潮.但是干冰升华易引起结霜;CO2气体过多则将导致水果、蔬菜等冷藏物呼吸困难而坏死;厢内温度难调;干冰成本较高。

故实际应用较少。

  3.冷板制冷:

  冷板制冷原理就是利用蓄冷剂冷冻后所蓄存的冷量进行制冷,然后在运输途中利用冷板中的蓄冷剂融化吸热,运输前先将厢内冷板中的蓄冷剂进行“充冷”使其冷却冻结。

使厢内温度保持在运输货物的适温范围内。

故将冷板又称“蓄冷板”

  均置干车上;分体式在车上仅装有制冷机组和蓄冷板。

停车时,冷板制冷装置的结构型式分为整体式和分体式。

整体式的动力装置、制冷机组和蓄冷板等。

利用地固动力装置驱动制冷机组对蓄冷板“充冷”实际应用中多采用后者。

常用蓄冷剂均为低融点共晶溶液,其融点通常比厢内适温低10℃左右。

当运输货物的适温改变时,则所选用的共晶溶液成分也要随之改变,冷板装置本身较重、体积较大,占据了车厢的一定容积,而且冷板充冷一次仅可持续工作8~15H因此冷板制冷适于中、轻型冷藏汽车的中、短途运输,近几年来,随着能源和环境污染间题日益突出,冷板制冷的应用发展较快,已成为仅次于机械制冷的制冷方式。

4.液氮制冷:

  液氮的沸点为-196℃汽化潜热为200kJ/kg,氮气的比热为1.05kJ/Kg.℃因此每千克液氮汽化并升温至-20℃时,液氮制冷就是利用液氮汽化吸热进行制冷。

大气压力下。

所吸收的热量约为385kJ.液氮沸点低,且是制氧的副产品,因而得到较广泛的应用。

  液氮汽化不会使厢内受潮,并且氮气对食品保鲜、防止干耗均有好处。

无噪声和污染;液氮制冷量大、制冷迅速,液氮制冷装置结构简单、工作可靠。

适于速冻。

此外,液氮制冷控温精确(士2℃但是液氮利息较高,需经常充注,因而推广受到一定限制。

同理,其他低温汽化的液态气体,亦可作为制冷剂,如液态二氮化碳(CN25.机械制冷:

  目前以蒸气压缩式应用最为广泛,机械制冷方式有:

蒸气压缩式、吸收式、蒸气喷射等。

下面介绍其制冷的工作原理。

  液体沸腾时,一定的压力下,液体达到某一温度(沸点)就会沸腾。

吸收汽化潜热而产生相变,转变为饱和蒸气。

同一压力下,不同液体的沸点和汽化潜热是不相同的如在一个大气压力下,水的沸点为100℃汽化潜热为2256.7kJ/kg而氟利昂12R12沸点为-29.8℃汽化潜热为165kJ/kg凡用于沸腾制冷的液体称为制冷剂或称为制冷工质。

制冷技术中,制冷剂的沸腾称为“蒸发”其沸点称为“蒸发温度”沸腾制冷则称之为“蒸发制冷”

  蒸气压缩式制冷属于蒸发制冷,液态制冷剂在蒸发器中汽化吸热制冷,制冷剂置于一个封闭系统中。

冷凝器中放热并重新冷凝成液态,压缩机的驱动下,制冷剂不时地循环工作。

  机械制冷装置广泛采用的主要原因在于制冷机组既能制冷又能加热,扩大了使用范围;厢内温度可实现自控调节,调温精确、可靠,调温范围较宽,能适应各种不同冷藏货物的运输。

尽管机械制冷装置结构比较复杂、购置及运行费用较高,运转噪声较大等间题,但迄今为止,机械制冷仍为一种可靠、有效的制冷方式。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1