空间几何体表面积与体积公式大全.docx

上传人:b****1 文档编号:23061274 上传时间:2023-04-30 格式:DOCX 页数:32 大小:29.55KB
下载 相关 举报
空间几何体表面积与体积公式大全.docx_第1页
第1页 / 共32页
空间几何体表面积与体积公式大全.docx_第2页
第2页 / 共32页
空间几何体表面积与体积公式大全.docx_第3页
第3页 / 共32页
空间几何体表面积与体积公式大全.docx_第4页
第4页 / 共32页
空间几何体表面积与体积公式大全.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

空间几何体表面积与体积公式大全.docx

《空间几何体表面积与体积公式大全.docx》由会员分享,可在线阅读,更多相关《空间几何体表面积与体积公式大全.docx(32页珍藏版)》请在冰豆网上搜索。

空间几何体表面积与体积公式大全.docx

空间几何体表面积与体积公式大全

 

空间几何体的表面积与体积公式大全

一、

全(表)面积(含侧面积)

1、

柱体

①棱柱

h

h

S侧ch

S全

2S底

S侧

②圆柱

S

S

2、

锥体

①棱锥:

S棱锥侧

1

2c底h

S全S底

S侧

h

h

②圆锥:

S圆锥侧

1

2c底l

S

S

3、

台体

1

①棱台:

S棱台侧

(c上底

c下底)h

2

S全

S上

S侧

S下

②圆台:

S棱台侧

1

(c上底

c下底)l

2

4、

球体

S上

S上

①球:

S球4

2

l

r

'

h

②球冠:

S下

③球缺:

S下

二、

体积

1、

柱体

①棱柱

Sh

hh

V柱

②圆柱

S

S

2、

锥体

①棱锥

1

h

h

V柱

3Sh

②圆锥

S

S

 

1/18

 

3、

台体

V台

1

S上S下

S下)

S上

S上

①棱台

3h(S上

②圆台

1

2

2

hl

V圆台

3h(r上

r上r下

r下)

'

h

4、

球体

S下

S下

①球:

V球

4

3

3r

②球冠:

 

③球缺:

'

说明:

棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线l计算。

三、拓展提高

 

1、祖暅原理:

(祖暅:

祖冲之的儿子)

 

夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截

 

面面积都相等,那么这两个几何体的体积相等。

 

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

 

2、阿基米德原理:

(圆柱容球)

圆柱容球原理:

在一个高和底面直径都是2r的圆柱形容器内装一个最大的

球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的

2。

3

 

2/18

分析:

圆柱体积:

V圆柱

Sh(

2

3

r)

2r

2

r

圆柱侧面积:

S圆柱侧

ch

2

(2

r)

2r

4r

因此:

球体体积:

V球

2

3

4

3

3

2

r

3

r

球体表面积:

S球

2

4

r

通过上述分析,我们可以得到一个很重要的关系(如图)

 

+=

 

即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体

 

积之和

 

3、

台体体积公式

公式:

V台

1

S上

S上S下

S下

3h

证明:

如图过台体的上下两底面中心连线的纵切面为梯形ABCD。

延长两侧棱相交于一点P。

P

设台体上底面积为S上,下底面积为S下

高为h。

D

E

C

易知:

PDC

PAB

,设PE

h1,

则PFh1

h

由相似三角形的性质得:

CD

PE

A

F

B

AB

PF

 

3/18

 

即:

S上

h1

(相似比等于面积比的算术平方根)

S下

h1h

整理得:

h1

S上h

S下

S上

又因为台体的体积=大锥体体积—小锥体体积

∴V台

1

h

)1

1

(S下

S上)

1

3S下h1

3S上h1

3h1

3S下h

代入:

h1

S上h

得:

V

1

S上h

(下

上)

1

S下

3S下

S上

S上

SS

3Sh

即:

V台

1

S下

S上)

1

1

(S上

S上S下

S下)

3S上h(

3S下h

3h

∴V台

1

S上S下

S下)

3h(S上

4、

球体体积公式推导

 

分析:

将半球平行分成相同高度的若干层(n层),n越大,每一层越近似于

圆柱,n

时,每一层都可以看作是一个圆柱。

这些圆柱的高为

r,则:

r

n

每个圆柱的体积ViSih=

2

ri

n

半球的体积等于这些圆柱的体积之和。

22

2

r

2

0r)

r1

n

2

r

2

1r)

r2

n

2

r

2

2r)

r3

n

r

2

r

2

r

2

[1

 

2

[1

 

2

[1

0

()

1

()

2

()

]

r2

2

]

r1

o

2

]

⋯⋯

rn

r

2

r[1

2

(n1r)

(n1)]

2

2

2

n

n

4/18

∴半球体积为:

V半球

r

2

2

2

Vn

n

(r1

r2

......rn)

0

2

1

2

2

r

2

).....

n1

=n

r{n

1

[

.(

)]}

2

2

n

2

n

2

n

=

[n

2

(n

1)]

0

1

2

nr

3

......

n

1(n

1)n(2n

1)

(n

1)(2n

1)

=

3

6

]

3

[1

]

[n

2

r

2

nr

n

6n

(1

1

)(2

1

3

n

n]

r

[1

6

当n

时,1

0

n

1

1

(1

∴V半球

r[1

)(2

r(1

162)

32r

n6

n]

3

3

3

∴球体积为:

V球

4

3

3

r

5、

球体表面积公式推导

分析:

球体可以切割成若干(

n个)近似棱锥,当n

时,这些棱锥的高

1

1

1

为球体半径,底面积为球面面积的

n,则每一个棱锥的体积V1

3

nS球r

则所有的小棱锥体积之和为球体体积。

即有:

1

4

3

3nS球r

n3

r

∴S球

4r

2

1

S球

n

 

o

 

6、正六面体(正方体)与正四面体

 

(1)体积关系

 

如图:

正方体切下四个三棱锥后,

 

5/18

 

剩下的部分为正四面体

设正方体棱长为a,

3

则其体积为:

Va

正方体

 

四个角上切下的每一个三棱锥体积为:

V三棱锥

1

1

1

2

1

3

3Sh

3

2a)a

6a

中间剩下的正四面体的体积为:

 

2

V正三棱锥

3Sh

3

[

2(2a)

sin60]

(2a)

(2

2a

3)3a

1

1

1

2

2

1

3

3

2

这样一个正方体可以分成四个三棱锥与中间一个正四面体

即:

1

3

1

3

3

6a

4

3a

a

(2)外接球

 

正方体与其体内最大的正四面体有相同的外接球。

(理由:

过不共面的四点确定一个球。

)正方体与其体内最大的正面体有四个公共顶点。

所以它们共球。

 

回顾:

①两点定线②三点定面③三点定圆④四点定球如图:

 

(a)正方体的体对角线=球直径

(b)正四面体的外接球半径=3高

4

(c)正四面体的棱长=正方体棱长2

 

(d)正方体体积:

正四面体体积=3:

1

 

(e)正方体外接球半径与

 

正四面体外接球半径相等

 

(3)正方体的内切球与正四面体的关系

 

6/18

 

(a)正方体内切球直径=正方体棱长

 

(b)正方体内切球与正四面体的四条棱相切。

 

(c)与正四面体四条棱相切的球半径=正方体棱长的一半

(d)设正四面体棱长为a,则与其棱都相切的球半径为r

1

有:

r1

1

a

2

2

2

4a

7、利用祖暅原理推导球体体积。

 

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物

 

体体积相等。

 

证明:

作如下构造:

在底面半径和高都是r的圆柱内挖去一个与圆柱等底等

 

高的圆锥。

如图:

 

r球1

hr锥1hR

 

在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半

径均为R,截面高度均为h,倒圆锥的截面半径为r锥1,半球截面半径为

r球1,

 

7/18

 

则:

挖去圆锥后的组合体的截面为:

2

2

S1

R

r锥1

半球截面面积为:

S2

2

r球1

∵倒圆锥的底面半径与高相等,由相似三角形易得:

r锥1h

在半球内,由勾股定理易得:

r球1

2

2

R

h

∴S1

2

2

S2

2

h

2

R

h

R

即:

S1S2,也就是说:

半球与挖去倒圆锥后有圆柱在相同的高度上有相

同的截面。

由祖暅原理可得:

V1

V2

所以半球体积:

V半球

1

2

2

2

2

3

Sh

3

Sh

3

Sh

3

R

R3

R

即,球体体积:

V球

2

3

4

3

23

R

3

R

8、

正方体与球

(1)正方体的内切球

 

正方体的棱长a

球体的直径d

4

4

d

3

3

3

1

3

V正方体a

V球

3

r

3

()

6

a

2

V正方体:

V球

6:

(2)正方体的外接球

正方体的体对角线3a球体的直径d

V球

3

r

3

3

2

a

(d)

4

3

4

3

3

2

V球:

V正方体

3:

2

 

8/18

 

(3)规律:

①正方体的内切球与外接球的球心为同一点;②正方体的内切球与外接球的球心在体对角线上;

 

③正四面体的内切球与外接球的的半径之比为:

1:

3

 

④正四面体内切球与外接球体积之比为:

1:

33

 

⑤正四面体内切球与外接球表面积之比为:

1:

3

 

⑥正方体外接球半径、正方体棱长、内切球半径比为:

3:

2:

1

 

⑦正四面体外接球、正四面体、内切球体积比为:

33:

6:

 

⑧正四面体外接球、正四面体、内切球表面积比为:

3:

6:

 

9、正四面体与球

 

(1)正四面体的内切球

 

解题关键:

利用体积关系思考

 

内切球的球心到各个面的距离相等,球心与各顶

 

点的连线恰好把一个正四面体分成四个三棱锥,

 

每个三棱锥的底面为原正四面体的底面,高为内

切球的半径r

利用体积关系得:

1

1

2

r)

1

1

2

4(3

2asin60

3

2asin60)h

所以:

r

1

为正四面体的高。

4h,其中h

2

1

2

6

2

由相关计算得:

h

[

(a

3)]

a

a

3

3

2

1

6

∴r4h

12a

 

9/18

 

即:

V球

4

3

4

6a)

3

r

3

12

 

3

63

216a

V正四面体

1

1

2

6

2

3

3

2asin60

3a

12a

V正四机体

18:

3

V

 

(2)正四面体的外接球

 

2

外接球的半径=

3

3

2

2

3a)=

6

4

4

a(

4

a

3

2

3

V球

4

3

4

6a)

3

r

3

4

63

8a

V正四面体

1

1

2

6

2

3

3

2asin60

3a

12a

∴V球:

V正四面体

6

3

2

3

33

:

2

8

a:

12a

(3)规律:

①正四面体的内切球与外接球的球心为同一点;②正四面体的内切球与外接球的球心在高线上;

 

③正四面体的内切球与外接球的的半径之和等于高;④正四面体的内切球与外接球的半径之比等于1:

3⑤正四面体内切球与外接球体积之比为:

1:

27⑥正四面体内切球与外接球表面积之比为:

1:

9⑦正四面体外接球半径、正四面体棱长、内切球半径比为:

36:

12:

6⑧正四面体外接球、正四面体、内切球体积比为:

273:

18:

3

 

10/18

 

⑨正四面体外接球、正四面体、内切球表面积比为:

9:

62:

 

10、圆柱与球

 

(1)圆柱容球(阿基米德圆柱容球模型)

 

圆柱高=底面直径=球的直径

球体体积=2圆柱体积

3

球面面积=圆柱侧面积

 

(2)球容圆柱

 

球体直径、圆柱的高、圆柱底面直径构成直

 

角三角形。

设球体半径为R,圆柱高为h,

底面半径为r

2

2

2

2

2

即:

R

h

4r

则有:

(2R)

h

(2r)

2

四、

方法总结

 

下面举例说明立体几何的学习方法

例:

已知正四面体的棱长为a,求它的内切球和外接球的半径

 

思路:

先分析球心的位置。

因为正四面体是特殊的四面体,显然内切球与

 

11/18

 

外接球的球心是重合的。

且是正四面体的高线交点。

再分析球心与一些特

 

殊的点、线、面的位置、数量关系。

在内切球这种情况下,球心垂直于每

 

一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶

 

点的距离相等。

 

方法1:

展平分析:

(最重要的方法)

 

如图:

取立体图形中的关键平面图形进行分析!

连接DO并延长交平面ABC于点G,连接GO1

连接DO1并延长交BC于点E,则A、G、E三点共线。

A

在平面AED中,由相似知识可得:

EO1

EG

1

O1D

GA

2

G

O

GO1

1

B

D

∴GO1//AD

O1

AD3

E

∴△GOO1∽△DOA

OO1

1

C

AO

3

即:

AO

3A

O1

3

h

3

6a

6a

4

4

4

3

4

O1O

1

AO1

1

1

6

6

4

4h

43

a12

a

V外接球

4

3

6

3

3

DO

8

a

V内切球

4

3

6

3

3

OO1

216

a

方法2:

体积分析:

(最灵活的方法)

 

如图:

设正四面体ABCD的内切球球心为O,连接

 

AO、BO、CO、DO,则正四面体被分成四个完全一样的三棱锥。

 

12/18

设内切球半径为r,正四面体的棱长为a

 

(2

3a)

2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1