北京高考生物知识点总结.docx

上传人:b****2 文档编号:23034618 上传时间:2023-04-30 格式:DOCX 页数:65 大小:1.94MB
下载 相关 举报
北京高考生物知识点总结.docx_第1页
第1页 / 共65页
北京高考生物知识点总结.docx_第2页
第2页 / 共65页
北京高考生物知识点总结.docx_第3页
第3页 / 共65页
北京高考生物知识点总结.docx_第4页
第4页 / 共65页
北京高考生物知识点总结.docx_第5页
第5页 / 共65页
点击查看更多>>
下载资源
资源描述

北京高考生物知识点总结.docx

《北京高考生物知识点总结.docx》由会员分享,可在线阅读,更多相关《北京高考生物知识点总结.docx(65页珍藏版)》请在冰豆网上搜索。

北京高考生物知识点总结.docx

北京高考生物知识点总结

生物知识点清单

*要求说明:

(Ⅰ).了解所列知识内容的确切含义,能够识别和辨认它们。

能够使用恰当的专业术语,进行叙述。

(Ⅱ).综合运用相关的知识、技能和研究方法,分析各种生物学现象和数据,通过推理和判断,得出正确结论并解答问题。

*对“五、生物技术与实践”的要求为:

①能独立完成生物学教材所规定的生物实验。

包括理解实验目的、原理、方法和操作步骤,掌握相关的操作技能,并能将这些实验涉及的方法和技能进行综合的运用。

②具备验证简单生物学事实的能力,并能对实验现象和结果进行解释、分析和处理。

③具有对一些生物学问题进行初步探究的能力。

包括运用观察、试验与调查、假说演绎、建立模型与系统分析等科学研究方法。

④能对一些简单的实验方案作出恰当的评价和修订。

一、分子与细胞

结合水:

与细胞内其它物质相结合,是细胞结构的组成成分。

自由水:

可以自由流动,是细胞内的良好溶剂,参与生化反应,运送营养物质和新陈代谢的废物。

水的主要生理功能:

①组成细胞;②维持细胞形态;③运输物质;④提供反应场所;⑤参与化学反应;⑥维持生物大分子功能;⑦调节渗透压。

无机盐的主要生理功能:

①构成化合物(Fe、Mg);②组成细胞(如骨细胞);③参与化学反应;④维持细胞和内环境的渗透压。

(2)糖类、脂质的种类和作用(Ⅱ)

糖类的分类:

有单糖、二糖和多糖之分。

单糖:

是不能水解的糖。

动、植物细胞中有葡萄糖、果糖、核糖、脱氧核糖。

二糖:

是水解后能生成两分子单糖的糖。

植物细胞中有蔗糖、麦芽糖,动物细胞中有乳糖。

多糖:

是水解后能生成许多单糖的糖。

植物细胞中有淀粉和纤维素(纤维素是植物细胞壁的主要成分)和动物细胞中有糖元(包括肝糖元和肌糖元)。

糖类的主要生理功能:

①供能(淀粉、糖元、葡萄糖等);②组成核酸(核糖、脱氧核糖);③细胞识别(糖蛋白);④组成细胞壁(纤维素)。

还原糖:

可用本尼迪特试剂或斐林试剂检测,与它们混合后加热产生砖红色沉淀,可溶性还原糖包括葡萄糖、果糖、麦芽糖等。

脂质的分类与功能:

①脂肪(由甘油和脂肪酸组成,生物体内主要储存能量的物质,维持体温恒定);②磷脂(类脂)(构成细胞膜、线立体膜、叶绿体膜等膜结构的重要成分);③固醇(包括胆固醇、性激素、维生素D等,具有维持正常新陈代谢和生殖过程的作用)。

(3)蛋白质、核酸的结构和功能(Ⅱ)

蛋白质的分类:

①单纯蛋白(如胰岛素);②结合蛋白(如糖蛋白)蛋白质的结构:

以氨基酸为基本单位,氨基酸间通过肽键链接形成肽链,肽链盘曲折叠形成具有一定空间结构和特定功能的蛋白质。

脱水缩合:

一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。

肽键:

肽链中连接两个氨基酸分子的键(-NH-CO-)。

二肽:

由两个氨基酸分子缩合而成的化合物,只含有一个肽键。

多肽:

由三个或三个以上的氨基酸分子缩合而成的链状结构。

有几个氨基酸叫几肽。

氨基酸:

蛋白质的基本组成单位,组成蛋白质的氨基酸约有20种,决定20种氨基酸的密码子有61种。

每种氨基酸分子至少含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上。

蛋白质的相关计算:

设构成蛋白质的氨基酸个数m,构成蛋白质的肽链条数为n,构成蛋白质的氨基酸的平均相对分子质量为a,蛋白质中的肽键个数为x,蛋白质的相对分子质量为y,

控制蛋白质的基因的最少碱基对数为r,

则肽键数=脱去的水分子数,为x=m-n……………………………………①

蛋白质的相对分子质量y=ma-18x…………………………………………②

r

或者y=a-18x…………………………………………③

3

核酸的分类:

①核糖核酸(RNA);②脱氧核糖核酸(DNA)核酸的结构:

以核苷酸为基本单位,核苷酸间通过磷酸二酯键链接,RNA是单链的,DNA是双螺旋状,DNA两条链键通过碱基间的氢键链接。

核酸的功能:

①贮存和传递遗传信息;②控制生物性状;③催化化学反应(RNA类酶)

原核细胞:

细胞较小,没有成形的细胞核。

组成核的物质集中在核区,没有染色体,DNA不与蛋白质结合,无核膜、无核仁;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。

真核细胞:

细胞较大,有真正的细胞核,有一定数目的染色体,有核膜、有核仁,一般有多种细胞器。

(2)膜系统的结构与功能(Ⅱ)

生物膜的结构:

由双层磷脂分子镶嵌了蛋白质。

蛋白质可以以覆盖、贯穿、镶嵌三种方式与双层磷脂分子相结合。

磷脂双分子层是细胞膜的基本支架,除保护作用外,还与细胞内外物质交换有关。

膜的结构特点是具有一定的流动性。

上述模型又称流动镶嵌模型。

细胞膜的选择透过性:

这种膜可以让水分子自由通过,细胞要选择吸收的离子和小分子(如:

氨基酸、葡萄糖)也可以通过,而其它的离子、小分子和大分子(如:

信使RNA、蛋白质、核酸、蔗糖)则不能通过。

膜蛋白:

指细胞内各种膜结构中蛋白质成分。

载体蛋白:

膜结构中与物质运输有关的一种跨膜蛋白质,细胞膜中的载体蛋白在协助扩散和主动运输中都有特异性。

细胞质:

在细胞膜以内、细胞核以外的原生质,叫做细胞质。

细胞质主要包括细胞质基质和细胞器。

细胞质基质:

细胞质内呈液态的部分是基质。

是细胞进行新陈代谢的主要场所。

细胞器:

细胞质中具有特定功能的各种亚细胞结构的总称。

细胞壁:

植物细胞的外面有细胞壁,主要化学成分是纤维素和果胶,其作用是支持和保护。

其性质是全透的。

(3)细胞器的结构和功能(Ⅱ)

名称

化学组成

存在位置

膜结构

主要功能

线粒体

蛋白质、呼吸酶、RNA、脂质、DNA

动植物细胞

双层膜

能量代谢

有氧呼吸的主要场所

叶绿体

蛋白质、光合酶、RNA、脂质、DNA、色素

植物叶肉细胞

光合作用

内质网

蛋白质、酶、脂质

动植物细胞中广泛存在

单层膜

与蛋白质、脂质、糖类的加工、运输有关

高尔基体

蛋白质、脂质

蛋白质的运输、加工、细胞分泌、细胞壁形成

溶酶体

蛋白质、脂质、酶

细胞内消化

核糖体

蛋白质、RNA、酶

无膜

合成蛋白质

中心体

蛋白质

动物细胞低等植物细胞

与有丝分裂有关

线粒体:

呈粒状、棒状,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶,线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体。

叶绿体:

呈扁平的椭球形或球形,主要存在植物叶肉细胞里,叶绿体是植物进行光合作用的细胞器,含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。

在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶。

内质网:

由膜结构连接而成的网状物。

功能:

增大细胞内的膜面积,使膜上的各种酶为生命活动的各种化学反应的正常进行,创造了有利条件。

核糖体:

椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。

是细胞内将氨基酸合成蛋白质的场所。

高尔基体:

由扁平囊泡、小囊泡和大囊泡组成,为单层膜结构,一般位于细胞核附近的细胞质中。

在植物细胞中与细胞壁的形成有关,在动物细胞中与分泌物的形成有关,并有运输作用。

中心体:

每个中心体含两个中心粒,呈垂直排列,存在动物细胞和低等植物细胞,位于细胞核附近的细胞质中,与细胞的有丝分裂有关。

液泡:

是细胞质中的泡状结构,表面有液泡膜,液泡内有细胞液。

化学成分:

有机酸、生物碱、糖类、蛋白质、无机盐、色素等。

有维持细胞形态、储存养料、调节细胞渗透吸水的作用。

3.细胞增殖与分化

(1)细胞周期(Ⅰ)

细胞周期:

连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,这是一个细胞周期。

一个细胞周期包括两个阶段:

分裂间期和分裂期。

分裂间期:

从细胞在一次分裂结束之后到下一次分裂之前,叫分裂间期。

分裂期:

在分裂间期结束之后,就进入分裂期。

分裂间期的时间比分裂期长。

(2)有丝分裂的过程、特征、意义(Ⅱ)植物细胞有丝分裂过程:

(一)分裂间期:

完成DNA分子的复制和有关蛋白质的合成。

结果:

每个染色体都形成两个姐妹染色单体,呈染色质形态。

(二)细胞分裂期:

A、分裂前期:

①出现染色体、出现纺锤体②核膜、核仁消失;记忆口诀:

膜仁消失两体现(说明是染色体出现和纺锤体形成)

B、分裂中期:

①所有染色体的着丝点都排列在赤道板上②在分裂中期染色体的形态和数目最清晰,观察染色体形态数目最好的时期;记忆口诀:

着丝点在赤道板。

C、分裂后期:

①着丝点一分为二,姐妹染色单体分开,成为两条子染色体,并分别向两极移动②染色单体消失,染色体数目加倍;记忆口诀:

着丝点裂体平分。

D、分裂末期:

①染色体变成染色质,纺锤体消失②核膜、核仁重现③在赤道板位置出现细胞板。

记忆口诀:

膜仁重现新壁成。

间期

前期

中期

后期

末期

DNA含量

2a—→4a

4a

4a

4a

2a

染色体数目(个)

2N

2N

2N

4N

2N

染色体单数(个)

0

4N

4N

0

0

染色体组数(个)

2

2

2

4

2

同源染色数(对)

N

N

N

2N

N

动、植物细胞有丝分裂的异同:

①相同点是染色体的行为特征相同,染色体复制后平均分配到两个子细胞中去。

②区别:

前期(纺锤体的形成方式不同):

植物细胞由细胞两极发出纺锤丝形成纺锤体;动物细胞由细胞的两组中心粒发出星射线形成纺锤体。

末期(细胞质的分裂方式不同):

植物细胞在赤道板位置出现细胞板形成细胞壁将细胞质分裂为二;动物细胞:

细胞膜从中部向内凹陷将细胞质缢裂为二。

有丝分裂的意义:

将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

(3)细胞的分化(Ⅱ)

细胞分化:

在个体发育过程中,相同细胞(细胞分化的起点)的后代,在细胞的形态、结构和生理功能上发生的稳定性差异的过程。

其实质是基因的选择性表达。

细胞分化的发生时期:

是一种持久性变化,它发生在生物体的整个生命活动进程中,胚胎时期达到最大限度。

细胞分化的特性:

稳定性、持久性、不可逆性、全能性。

细胞分化的意义:

经过细胞分化,在多细胞生物体内就会形成各种不同的细胞和组织;多细胞生物体是由一个受精卵通过细胞增殖和分化发育而成,如果仅有细胞增殖,没有细胞分化,生物体是不能正常生长发育的。

(4)细胞的全能性(Ⅱ)

细胞全能性:

一个细胞能够生长发育成整个生物的特性。

分化程度越高的细胞,其全能性越低。

从理论上讲,生物体的每一个活细胞都应该具有全能性。

在生物体内,细胞并没有表现出全能性,而是分化成为不同的细胞、器官,这是基因在特定的时间、空间条件下选择性表达的结果,当植物细胞脱离了原来所在植物体的器官或组织而处于离体状态时,在一定的营养物质、激素和其他外界的作用条件下,就可能表现出全能性,发育成完整的植株。

(5)细胞的凋亡和衰老(Ⅰ)

细胞的衰老:

细胞生理和生化发生复杂变化的过程,最终反应在细胞的形态、结构和生理功能上。

其特征为:

①水分减少,细胞萎缩,体积变小,代谢减慢;②有些酶活性降低(细胞中酪氨酸酶活性降低会导致头发变白);③色素积累(如:

老年斑);④呼吸减慢,细胞核增大,染色质固缩,染色加深;⑤细胞膜通透功能改变,物质运输能力降低。

细胞的凋亡:

由基因决定的细胞自动结束生命的过程。

细胞凋亡的意义:

在成熟的生物体中,细胞的自然更新、被病原体感染的细胞的清除,是通过细胞凋亡完成的。

细胞凋亡对于多细胞生物体完成正常发育,维持内部环境的稳定,以及抵御外界各种因素的干扰都起着非常关键的作用。

(6)细胞癌变(Ⅰ)

细胞的癌变:

在生物体的发育中,有些细胞受到各种致癌因子的作用,不能正常的完成细胞分化,变成了不受机体控制的、能够连续不断的分裂的恶性增殖细胞。

致癌因子:

①物理致癌因子(主要是辐射致癌);②化学致癌因子(如苯、醌、煤焦油等);③病毒致癌因子(能使细胞癌变的病毒叫肿瘤病毒或致癌病毒)。

致癌因子作用机理:

癌细胞是由于原癌基因激活,抑癌基因失效,细胞发生转化引起的。

细胞的癌变通常是由多次变异导致的。

4.细胞代谢

物质进出细胞膜的方式:

①自由扩散:

从高浓度一侧运输到低浓度一侧;不消耗能量。

例如:

H2O、O2、CO2、甘油、乙醇、苯等;②主动运输:

从低浓度一侧运输到高浓度一侧;需要载体;需要消耗能量。

例如:

葡萄糖、氨基酸、无机盐的离子(如K+);③协助扩散:

有载体的协助,能够从高浓度的一边运输到低浓度的一边,这种物质出入细胞的方式叫做协助扩散。

如:

葡萄糖进入红细胞。

(2)酶的特性和作用(Ⅱ)

酶:

是活细胞(来源)所产生的具有催化作用(功能)的一类有机物。

大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有的是RNA(这类酶又称核酶)。

酶促反应:

酶所催化的反应。

反应条件较为温和,催化效率比较高。

底物:

酶催化作用中的反应物叫做底物。

酶促反应序列:

生物体内的酶促反应可以顺序连接起来,即第一个反应的产物是第二个反应的底物,第二个反应的产物是第三个反应的底物,以此类推,所形成的反应链叫酶促反应序列。

,其意义在于各种反应序列形成细胞的代谢网络,使物质代谢和能量代谢沿着特定路线有序进行,确定了代谢的方向。

(3)ATP的特性和作用(Ⅱ)

ATP的结构简式:

ATP是三磷酸腺苷的英文缩写,结构简式:

A-P~P~P,其中:

A代表腺苷,P代表磷酸基,~代表高能磷酸键,-代表普通化学键。

注意:

ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。

这种高能化合物在水解时,由于高能磷酸键的断裂,必然释放出大量的能量。

这种高能化合物形成时,即高能磷酸键形成时,必然吸收大量的能量。

ATP与ADP的相互转化:

在酶的作用下,ATP中远离A的高能磷酸键水解,释放出其中的能量,同时生成ADP和Pi;在另一种酶的作用下,ADP接受能量与一个Pi结合转化成ATP。

ATP与ADP相互转变的反应是不可逆的,反应式中物质可逆,能量不可逆。

ADP和Pi可以循环利用,所以物质可逆;但是形成ATP时所需能量绝不是ATP水解所释放的能量,所以能量不可逆。

呼吸作用:

也叫细胞呼吸,是指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其他产物,释放出能量并生成ATP的过程。

根据是否有氧参与,分为有氧呼吸和无氧呼吸。

有氧呼吸:

是指细胞在有氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。

总反应式为C6H12O6+6O2¾¾®酶6CO2+6H2O+能量。

具体过程①场所:

先在细胞质的基质,后在线粒体。

②过程:

第一阶段、C6H12O6(葡萄糖)→2CH4O3(丙酮酸)

+4[H]+少量能量(细胞质的基质);第二阶段、2C3H4O3(丙酮酸)→6CO2+20[H]+少量能量(线粒体);第三阶段、24[H]+O2→12H2O+大量能量(线粒体)。

无氧呼吸:

一般指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。

总反应式为(酒精发酵)C6H12O6¾¾®酶2C2H5OH(酒精)+2CO2+少量能量;(乳酸发酵)C6H12O6¾¾®酶2C3H6O3(乳酸)+少量能量。

具体过程:

①场所:

始终在细胞质基质②过程:

第一阶段、和有氧呼吸的相同;第二阶段、2C3H4O3(丙酮酸)→C2H5OH(酒精)+CO2(或C3H6O3乳酸)②高等植物被淹产生酒精(如水稻),(苹果、梨可以通过无氧呼吸产生酒精);高等植物某些器官(如马铃薯块茎、甜菜块根)产生乳酸,高等动物和人无氧呼吸的产物是乳酸。

有氧呼吸与无氧呼吸的比较:

①场所:

有氧呼吸第一阶段在细胞质的基质中,第二、三阶段在线粒体②O2和酶:

有氧呼吸第一、二阶段不需O2,;第三阶段:

需O2,第一、二、三阶段需不同酶;无氧呼吸--不需O2,需不同酶。

③氧化分解:

有氧呼吸--彻底,无氧呼吸--不彻底。

④能量释放:

有氧呼吸(释放大量能量38ATP)

---1mol葡萄糖彻底氧化分解,共释放出2870kJ的能量,其中有1161kJ左右的能量储存在ATP中;无氧呼吸(释放少量能量2ATP)--1mol葡萄糖分解成乳酸共放出196.65kJ能量,其中61.08kJ储存在ATP中。

⑤有氧

呼吸和无氧呼吸的第一阶段相同。

比较项目

有氧呼吸

无氧呼吸

反应场所

真核细胞:

细胞质基质,主要在线粒体原核细胞:

细胞基质(含有氧呼吸酶系)

细胞质基质

反应条件

需氧

不需氧

反应产物

终产物(CO2、H2O)、能量

中间产物(酒精、乳酸、甲烷等)、能量

产能多少

多,生成大量ATP

少,生成少量ATP

共同点

氧化分解有机物,释放能量

呼吸作用的意义:

呼吸作用能为生物体的各项生命活动提供能量。

例如细胞的分裂,植株的生长,矿质元素的吸收,肌肉的收缩,神经冲动的传导,为体内其他化合物的合成提供原料。

(5)光合作用(Ⅱ)

光合作用的发现:

①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:

植物可以更新空气。

②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:

绿色叶片在光合作用中产生了淀粉。

③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:

叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O2,释放的是O2。

光合作用释放的氧全部来自来水。

叶绿体的色素:

①分布:

基粒片层结构的薄膜上。

②色素的种类:

高等植物叶绿体含有以下四种色素。

A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(黄绿色);B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素(橙黄色)和叶黄素(黄色)

叶绿体的酶:

分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。

光合作用的过程:

①光反应阶段a、水的光解:

2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:

ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:

a、CO2的固定:

CO2+C5→2C3b、C3化合物的还原:

2C3+[H]+ATP→(CH2O)+C5

光反应与暗反应的区别与联系:

①场所:

光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

②条件:

光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

③物质变化:

光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

④能量变化:

光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。

⑤联系:

光反应产物[H]是暗反应中CO2的还原剂,

ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。

光合作用的意义:

①提供了物质来源和能量来源。

②维持大气中氧和二氧化碳含量的相对稳定。

③对生物的进化具有重要作用。

总之,光合作用是生物界最基本的物质代谢和能量代谢。

影响光合作用的因素:

有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。

这些因素中任何一种的改变都将影响光合作用过程。

如:

在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。

再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。

当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。

光反应的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。

暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。

光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。

虽然光反应产生了足够的ATP和[H],但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。

在光合作用中:

a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。

b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。

(6)同化作用和异化作用(Ⅰ)

新陈代谢:

包含同化作用和异化作用,是生命的基本特征之一。

同化作用:

生物体把从外界环境中获取的营养物质转变成自身的组成物质,并且储存能量的变化过程。

即生物体利用能量将小分子合成为大分子的一系列代谢途径。

根据同化方式的不同,可将生物分为自养型生物和异养型生物。

异化作用:

将自身有机物分解成无机物归还到无机环境并释放能量的过程叫异化作用。

异化作用的类型包括需氧型、厌氧型和兼性厌氧型。

自养型:

生物体在同化作用的过程中,能够直接把从外界环境摄取的无机物转变成为自身的组成物质,并储存了能量,这种新陈代谢类型叫做自养型。

异养型:

生物体在同化作用的过程中,不能直接利用无机物制成有机物,只能把从外界摄取的现成的有机物转变成自身的组成物质,并储存了能量,这种新陈代谢类型叫做异养型。

需氧型:

生物体在异化作用的过程中,必须不断从外界环境中摄取氧来氧化分解自身的组成物质,以释放能量,并排出二氧化碳,这种新陈代谢类型叫做需氧型。

厌氧型:

生物体在异化作用的过程中,在缺氧的条件下,依靠酶的作用使有机物分解,来获得进行生命活动所需的能量,这种新陈代谢类型叫做厌氧型。

兼性厌氧型:

在正常情况下进行有氧呼吸,在缺氧条件下,进行厌氧呼吸。

化能合成作用:

不能利用光能而是利用化学能来合成有机物的方式(如硝化细菌能将土壤中的NH3与O2反应转化成HNO2,HNO2再与O2反应转化成HNO3,利用这两步氧化过程释放的化学能,可将无机物(CO2和

H2O合成有机物(葡萄糖))。

二、遗传与进化

相对性状

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1