常洪沉管隧道关键施工技术概述docWord文件下载.docx

上传人:b****8 文档编号:22921690 上传时间:2023-02-06 格式:DOCX 页数:25 大小:286.49KB
下载 相关 举报
常洪沉管隧道关键施工技术概述docWord文件下载.docx_第1页
第1页 / 共25页
常洪沉管隧道关键施工技术概述docWord文件下载.docx_第2页
第2页 / 共25页
常洪沉管隧道关键施工技术概述docWord文件下载.docx_第3页
第3页 / 共25页
常洪沉管隧道关键施工技术概述docWord文件下载.docx_第4页
第4页 / 共25页
常洪沉管隧道关键施工技术概述docWord文件下载.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

常洪沉管隧道关键施工技术概述docWord文件下载.docx

《常洪沉管隧道关键施工技术概述docWord文件下载.docx》由会员分享,可在线阅读,更多相关《常洪沉管隧道关键施工技术概述docWord文件下载.docx(25页珍藏版)》请在冰豆网上搜索。

常洪沉管隧道关键施工技术概述docWord文件下载.docx

干坞施工的关键是边坡的稳定和基底沉降的控制。

.1 

干坞基坑的边坡稳定

根据计算和基坑试挖的结果,干坞分三级放坡,综合坡度为1:

3.5,中设两级1.5m宽平台。

边坡采用干砌块石水泥砂浆勾缝的护坡方式,并在块石护坡体中设置纵横向钢筋混凝土梗格。

干坞土方施工时的临时边坡控制在1:

3左右,中设两级宽度为10m左右的施工平台,分别供2台1.0m3挖掘机将土方向上翻挖;

地面再配1台挖机将接力开挖的土方装运。

边坡土体的排水采用石屑倒滤层,并以梗格底角处放置的1m长毛竹排水管作为泄水孔。

边坡坡面每级平台上设横向截水沟,与顺坡向排水沟构成坡面排水系统,可及时将坡面汇集的和泄水孔流出的水引排到坞底排水系统中,确保边坡的安全。

为提高干坞边坡的稳定性,减少地下水的渗入,沿干坞周边,在干坞第一级平台位置(-1.10m)处设置一排φ700mm深层搅拌桩,穿过Ⅲ2灰色粘质粉土透水层作为隔水帷幕。

为了保证临江侧干坞边坡和大堤的稳定,临江侧岸壁保护结构采用宽8m的格构型搅拌桩重力式结构。

坞墩结构为满堂搅拌桩,结构周边及中间纵横插入“H”型钢,顶部面层以30cm厚的钢筋混凝土板联系。

为加强坞墩和大堤保护结构的连接,避免接缝渗漏,施工时两者之间接缝以锯齿型搭接。

为避免坡脚处开挖过深,将坞底周边的排水管设于距坡脚3.0m处。

施工时分段从坡脚处按1:

2的坡度放坡开挖并埋设φ600管道。

干坞施工过程中加强对干坞地表和各平台处的沉降和位移的监测,并应用角点效应的概念,采用角点效应比分析干坞边坡变形和变形速率,以判断基坑的稳定性。

当实测的变形量或变形速率比计算值大10%~20%时,即报警并采取稳定边坡措施。

2.2 

干坞坞底处理

为了避免管段制作因干坞地基变形产生裂缝,干坞施工时对干坞的坞底基础作了换填处理,换填厚度为1.5m。

由于坞底基础不但要满足承载变形要求,而且要能消除管段起浮时的吸附力,因此管段下换填基础的上层为50cm的碎石起浮层。

管底和道路下的换填基础设计如图4所示。

根据现场试验所得参数进行的三维有限元分析,采用换填基础可满足管段制作时差异沉降不大于20mm的要求。

管段制作

3.1 

本体防水的混凝土管段结构裂缝控制

混凝土配合比的设计中应用了掺加粉煤灰和外加剂的“双掺”技术,以减少水泥用量,降低水化热,提高混凝土工作性和抗渗性,并可补偿收缩,从而最终达到减少裂缝产生、提高混凝土抗裂和抗渗性的目的。

通过对多组配合比的混凝土强度、抗渗、重度、施工性能,以及绝热温升等指标的测定比较,选择了如表1的管段混凝土配合比。

为了达到混凝土配合比的设计要求和性能,首先对原材料的供应和计量进行严格控制;

其次根据夏季施工的环境温度,搭设原材料凉棚,并用冰水拌和混凝土;

再是通过外加剂中缓凝组份的调节来控制混凝土配合比在不同季节条件下的施工性能。

根据地基沉降分析结果,管段制作采用由中间向两端推进的分节浇筑流程。

每节管段共分5小节,每小节浇筑长度控制在17~20m左右。

每两小节间设宽1.5m左右的后浇带以减少管段因温度应力及纵向差异沉降而产生的裂缝。

每小节的管节分三次(底板、中隔墙、顶板及外侧墙)浇筑,浇注时严格控制各次混凝土浇筑的间隔时间,其中底板和侧墙的浇捣间隔时间不超过20d。

由于管段结构采用的混凝土绝热温升达到53℃,如不采取降温措施,结构混凝土的内外温差可能超过40℃,裂缝比较容易产生,所以必须采取冷却措施。

根据计算,因底板和顶板的温度应力远小于同期混凝土的抗拉强度,所以冷却管的布置范围仅为外侧墙内。

每墙冷却管双排布置,排间距为400mm。

底层冷却管布置在底板与侧墙的施工缝以上200mm处,共布置9层18根冷却管(图5)。

在每小节管节制作时设三个温度监测断面(分别设于侧墙的1/4,1/2和3/4位置处)对混凝土温度进行监测。

温度监测采用自动数据采集仪。

监测结果表明由于采用混凝土冷却措施,混凝土的温差控制在15℃以内,混凝土温度应力可降低50%以上。

管段混凝土采用泵送。

外侧墙与顶板一次浇捣完成,以减少施工缝的形成。

外侧墙浇捣过程中,使用了3m间距排列的浇捣串筒,以防止混凝土离析,同时采用分层浇捣以保证混凝土的密实。

管段养护时,底板和顶板采用蓄水养护;

中隔墙采用带模养护;

外侧墙外侧采用悬挂土工布并喷淋养护方法,内侧则采用悬挂帆布封闭两端孔口后保湿养护的办法。

3.2 

管段干舷控制

为了提高混凝土结构的抗渗性能,在模板设计中取消了外侧墙模板的对拉螺栓,所以管段制作的模板除需达到保温、保湿和平整度要求外,整个系统还需有足够的刚度,保证在施工荷载作用下变形不大于L1/500,以达到管段制作的精度要求。

混凝土生产中除对原材料的采购进行管理外,还必须对计量系统经常校准,保证每拌、每次混凝土的称量精度。

此外,混凝土的浇筑严格按规范分层浇捣密实。

每次混凝土浇捣完成后需将方量、试块重度等仔细统计并汇总,实

行材料总量控制,以提供管段干舷计算分析。

基槽浚挖和清淤

江中基槽浚挖和基槽内回淤处理是管段沉放前的重要工作,其完成质量是沉放成功的保证。

4.1 

基槽浚挖

以往水中挖泥由于抓斗定位精度差,造成抓斗水下挖泥超挖和欠挖,使基槽平整度差,标高达不到要求,所以解决挖泥精度问题的关键是定位。

双GPSRTK定位定深系统可对船舶进行三维精确定位,其平面定位精度为2~3cm,高程精度4~6cm。

系统能以平面和剖面的图形数据形式将泥斗位置和深度显示在监控屏幕上指导操作者挖泥。

基槽浚挖分普挖与精挖两步进行。

普挖深度为基槽底面以上2m至河床顶面的部分,精挖为剩余部分。

4.2 

基槽清淤技术

基槽清淤采用由自航耙吸船和抓斗挖泥船联合组船的方案,利用抓斗挖泥船的6只锚控制自航耙吸船的船位和清淤点的进点。

清淤采用定点、分层施工。

施工过程中采用回声测深仪检测,吸完一遍检测一次,一般需往复清淤3~4遍,才能清至要求的水样比重和水深度。

管段基础施工

管段基础施工的关键是桩基施工的精度控制和管底与桩的囊袋灌浆连接传力。

5.1 

桩基施工精度控制

桩基施工精度的控制包括预制桩制作的精度和江中沉桩的精度控制。

预制桩由60cm×

60cm预应力钢筋混凝土方桩和长3m、φ750mm直径的钢接桩组合而成,便于桩顶标高修正。

通过对混凝土方桩的制作工艺和钢桩自动焊接加工的工艺控制,确保钢管桩与方桩拼接轴线误差控制在3mm以内。

基槽第一次普挖完成后,即开始江中桩基施工。

27~37m长的桩采用63.8m高桩架的打桩船分两步实施,先将桩顶施打到水面以上2m左右停锤,然后用5m或15m长送桩设备将桩送入水面下设计标高。

沉桩平面定位采用2台经纬仪交会方法,并应用全站仪进行坐标校核;

高程采用全站仪校核。

沉桩高程误差在0~-5cm之间,沿管段平面横向误差≤10cm,纵向误差≤15cm,垂直误差≤0.4%。

5.2 

管底囊袋灌浆

桩顶与管底是通过囊袋灌浆连接传力的。

囊袋直径为φ1500mm,完全充涨后的厚度为40cm,可以调节桩与注浆孔间平面位置±

35cm和间隙±

20cm的位置偏差。

囊袋灌浆材料为3.3砂率的砂浆,7d强度>

8MPa,28d强度>

14MPa。

在管段沉放就位后立即在管内实施灌浆,以使管段由临时支承转换为桩基支承。

施工时先灌注支承千斤顶附近的两排孔,再从管段自由端向压接端灌注。

灌浆时先打开通气阀,当通气孔中冒出浓浆,再关闭通气阀灌注,直至达到每孔设计灌浆量。

灌浆时对千斤顶压力和灌浆口压力进行严密观测,以防管段抬升。

5.3 

管底充填灌浆

管段沉放到位后,为确保所有桩基与地基共同受力,须对管底空隙进行灌浆充填。

管底充填灌浆在管段回填覆盖完成后进行。

根据试验,充填灌浆的最大扩散半径可达到7m。

灌浆同时对管段接头间相对位移和管段抬升情况进行监测,一旦有微小运动即停止灌浆,以防管段抬升。

管段浮运与沉放

管段浮运沉放的技术关键是管段水平和垂直控制的方法,以及管段水下沉放对接的姿态监控和管段沉放后的稳定。

6.1 

管段水平控制系统

管段浮运、沉放水平控制的锚缆系统布置如图6,其中干坞周边布置9台管段坞内移位和纵向浮运出坞用绞车;

江北岸边布置4台纵向浮运绞车;

江中布置3对6只沉放用横向定位锚碇。

管段浮运采用岸控方式。

根据水力模型试验结果,江北岸的4台牵引绞车、管段出坞牵引用的坞口2台绞车,以及控制管段前后平衡的尾缆绞车按100kN能力配置,其余岸上仅作移位和平衡稳定用的绞车按50kN能力配备。

管段沉放采用首尾锚和边锚定位系统,其中E1和E2两管段的尾缆系于管段底板处,以保证管段沉放时南侧辅助航道上船只通行的水深条件。

三组江中锚碇块分别布置在江中管段接头的沿线上,每只锚碇块距隧道轴线360m,可提供1000kN力。

6.2 

管段垂直控制系统

管段沉放采用双浮箱吊沉法。

钢浮箱按2%的起吊能力设计,浮箱尺寸为20.5m×

12m×

3m。

管内水箱的储水量按1.04的管段抗浮安全系数设计,可为管段在沉放的各个阶段提供相应的负浮力。

由于甬江河道积淤严重,水箱设计时水重度取值参考原甬江隧道和国外海中沉管的经验,取为10.26kN/m3,并考虑管段拖运沉放时±

的最大纵、横摆角。

管段每孔中的各个水箱由1根进排水总管连接,并配水泵1台。

左右2孔的两根水管之间设1根连通管,以便2根总管相互备用。

进排水系统可采用强制进水、自然进水和隔腔排水等操作方式。

管段支承采用三点支承方式,前端采用鼻托搁置,后端两个垂直千斤顶搁置于临时支承上。

临时支承结合管段桩基采用钢管桩。

6.3 

管段浮运、沉放作业

管段过江浮运和沉放选定在农历廿三或廿四中潮差最小、流速最缓的一天中进行。

其中将过江浮运、消除干舷沉放放在施工当天一个慢流的时间段内,而潜水检查、对接则安排在下一个慢流时间段内进行,作业计划如图7。

管段浮运分为两个阶段:

沉放前一天午后平潮时由坞顶绞车将管段移出坞口50m,然后系缆过夜;

沉放当天换缆成为过江浮运系缆布置后即起航浮运,浮运速度不超过10m/min。

管段浮运至距已沉管段10m位置处,即停顿调整系缆布置进入沉放状态。

管段沉放首先需灌水克服干舷,然后继续灌水达到管段下沉所需的约1%的负浮力。

当浮箱吊力达到1%负浮力时,即以约30cm/min.的速度放缆下沉。

下沉开始时先按沉放设计坡度调整管段姿态,然后前移至距已沉管段3m处继续下沉,当距设计标高1m时,再前靠至距已沉管段20cm距离处,将管段搁置在前端结构下鼻托上,同时伸出尾端垂直千斤顶,搁置在支承钢管桩上。

最后通过水平定位系统和临时千斤顶对管段的平面位置和纵坡进行调整,准备拉合对接。

待沉管段调整到设计的姿态后,即从岸上绞拉滑轮组拉合管段,然后再打开封门上的100进气阀和φ150排水阀排除隔腔内水,进行水力压

接。

6.4 

管段浮运、沉放三维姿态测量

管段浮运、沉放采用坐标测量方法。

沉放时在甬江两岸隧道轴线两侧设立2个测站3台全站仪,通过测量管顶测量塔上的棱镜坐标,并根据管段特征点和棱镜坐标的相对坐标关系确定管段水下三维姿态。

整个测量系统具有人工对准、自动采集、数据通信(有线或无线)传输、计算机处理并实时显示管段三维姿态的功能,可满足管段沉放平面定位精度±

30mm、高程定位精度±

35mm的要求;

系统的数据采集频率可达5s一组,满足了管段沉放的定位操作要求。

6.5 

管段沉放后稳定

水力压接完成后,缓缓放松钢浮箱上吊缆,使整个管段由前端鼻托和后端两个垂直千斤顶支承。

然后根据实测的江底最大水重度,向管内水箱内灌水,直至抗浮安全系数达到1.03左右为止。

随后立即拆除钢浮箱、测量塔、人孔井等管顶舾装件,以便尽快对管段进行锁定抛石施工。

沉放完成后需在管段外侧齐腰部进行锁定回填,以确保管段的稳定。

回填施工采用网兜法,施工抛石分丝、分层、对称进行,由距自由端1/4处向压接端抛填,剩余部分待下节管段沉放后完成,以防抛石滚落到下节管段基槽影响沉放。

为提高定位精度,将定位定深系统应用于锁定抛石。

管段连接

7.1 

管段间接头

管段间采用柔性接头形式,如图8。

其中,GINA橡胶止水带和OMEGA橡胶止水带构成管段接头的两道防水屏障;

预应力钢缆则作为7°

地震工况下的接头限位装置,这种装置又可在管段最终接头施工时提供一部分管段止退力。

同时接头处还设置了水平和垂直剪切键。

GINA止水带在管段制作后期、坞内灌水前完成。

安装前必须保证管段端钢壳的面不平整度小于3mm,每米面不平整度小于1mm,垂直和水平误差不允许超过3mm。

OMEGA止水带的安装在管段沉放后、管段接头处两道封墙拆除前完成。

为了安装方便,OMEGA止水带在底边留有一个现场硫化热接接头。

OMEGA止水带安装完成后即连接接头钢拉索,并旋紧连接套筒使拉索预紧。

之后对钢拉索进行外裹橡胶伸缩管和热缩管、内注油脂的防腐防锈处理,并在外侧设置1.5cm厚的防火板,以达到耐火温度为1200℃,耐火持时为1h的防火要求。

最后进行管段底板处水平剪切键的制作,中隔墙处垂直剪切键的施工须待管段稳定后进行。

7.2 

管段与江北隧道的连接

由于江中E1管段沉放后与江北连接井连接并搁置在其底板上,所以连接井端面设计成管段端面形式。

同时为减小岸边段与沉管段结构的差异沉降,在连接井处采用了φ800的钻孔灌注桩基础。

连接井开挖深度约15m,最深处达15.68m。

连接井施工时两侧采用0.6m厚、28m深的地下墙,端部采用26m长的SMW桩(内插700(300型钢)作为围护结构。

待新的江北岸边防汛体系建成后,即拔除围护结构的端部型钢,以便江北侧的浚挖和沉放作业。

7.3 

江南最终接头干地施工

由于管段由北向南依次沉放,所以E4管段与江南暗埋段的接头为沉管的最终接头。

最终接头采用干地法施工。

施工前的坞口封堵是依靠E4管段尾端顶部的挡墙、管段沉放后两侧浇筑的水下混凝土剪切键和管底的注浆实现(图9)。

挡墙在管段出坞前制作完成,既可作管段压重,又可作挡土墙之用。

E4管段与江南暗埋段的连接接头为变形缝形式。

E4制作时在其南端顶板预留了间距为12cm的剪切销,底板制作了剪切键,端面埋置了钢边橡胶止水带。

为使E4管段与江南隧道结构沉降协调,江南第一节暗埋段的基础采用桩基形式,共布置5排20根ф1000的钻孔灌注桩。

同时在接头处设置了1条OMEGA止水带,以作为该接头的止水措施。

结语

常洪隧道是国内第一条桩基沉管隧道。

由于在沉管隧道建设中,针对隧址处的水文、地质和工程条件,采用合理施工技术,抓住技术关键,精心管理,使工程以“高起点、高水平、高标准、低成本”的一流水平取得成功。

参考文献

[1]刘千伟,杨国祥,周松.宁波市常洪沉管隧道工程.世界隧道.2000年第6期

沉管隧道混凝土管段制作裂缝控制工法 

沉管法是建造江底、海底大型隧道的一种施工方法,沉管隧道由一节或若干节预制的管段组成,分别浮运到现场,一节接一节地沉放于水底进行连接而成。

沉管隧道管段有两种类型,一种是混凝土沉管管段,另一种是钢壳沉管管段。

本工法针对混凝土沉管隧道管段。

混凝土沉管隧道最早出现在欧洲。

半个多世纪以前,在荷兰鹿特丹建成了第一条钢筋混凝土沉管隧道。

我国第一条建成的沉管隧道是广州的珠江隧道。

混凝土管段一般在干坞内制作,宁波常洪沉管隧道4节100m长的混凝土管段施工,成功地控制了裂缝产生,成为国内首次依靠混凝土本体防水的沉管隧道。

上海外环线沉管隧道也采用该工法制作了7节管段。

该技术成果达到国际先进水平,获2002年度上海市科技进步二等奖。

一、工法特点

大型沉管管段在干坞内制作,有较好的工厂化制作条件,制作的沉管有较好的整体防水性能,制作精度容易控制,施工成本较低。

1.混凝土配合比具有低水化热、抗渗、抗裂性能,重度精确。

2.支模系统刚度大、精度高,易确保管段制作精度。

3.混凝土拌制计量正确,作业自动化程度高。

4.采用多项技术措施控制混凝土裂缝,不需采用管段外防水措施。

二、适用范围

本工法适合各种大、中型混凝土沉管隧道的钢筋混凝土管段制作。

三、工艺原理

1.采用低水化热水泥、双掺技术等配制满足强度、抗渗、容重、抗裂要求的沉管管段混凝土。

2.提高了钢模刚度和控制支模变形,达到沉管管段制作的尺寸精度。

3.外侧墙混凝土浇筑采用冷却管和温度监控相结合措施,防止温差引起的混凝土裂缝。

4.管段混凝土养护采用顶板蓄水养护、侧墙保湿保温、孔口挂帘措施。

5.采用分段浇筑和后浇带施工技术,减少温度和收缩应力,以及软土地基上的不均匀沉降。

四、工艺流程

(一)管段总体流程

为避免混凝土收缩和差异沉降产生开裂,混凝土管段制作,一般将每节管段分为几节10~20m长的管节。

管节之间可设1~2m后浇带,将相邻制作完成的管节连接。

整个管段的施工流程,一般从中间往两端展开。

以上海外环隧道为例,如图1所示。

图1 

上海外环隧道管段总体施工流程

(二)管节施工流程

每段管节的施工则是按照底板→中隔墙→外侧墙及顶板的流程进行。

以上海外环隧道管段示意,见图2。

图2 

上海外环隧道管节施工流程

具体管段的施工流程为:

干坞起浮层平整→底板放样→18mm胶合板铺设→底板钢筋绑扎、预埋件安装→施工缝橡胶止水带安装→模板安装→验收→测量校核→底板混凝土浇筑→混凝土养护→施工缝处理(人工凿毛、吹缝)→中隔墙钢筋绑扎、预埋件安装→模板安装→验收、测量校核→中隔墙混凝土浇筑→混凝土养护→施工缝处理(人工凿毛、吹缝)→支架、脚手及内模模板安装(包括模板清理、模板封箱带贴缝)→验收、顶板标高校核→侧墙及顶板钢筋绑扎、预埋件安装→连续施工缝橡胶止水带安装→侧墙外模安装→侧墙、顶板混凝土浇筑→混凝土养护→后续分节施工(同以上循环)→后浇带施工→管内设备安装→端头钢壳及混凝土封门制作安装→GINA止水带安装

五、施工要点

1.测量管段、管节位置定位、中轴线放样、预埋件放样、模板放样必须准确,确保管节制作精度。

管段制作完成后必须进行尺寸实测,并根据实测数据调整管顶防锚层厚度,确保管节顺利起浮并具有合适的干舷高度。

2.根据现场施工实际条件,合理采用低水化热水泥、双掺技术等配制满足强度、抗渗、容重、抗裂要求的混凝土,提高管节制作质量。

3.管段制作应选用合适的模架和模板体系,模架体系必须具有足够的强度和刚度,防止在浇筑过程中发生变形影响管段制作精度。

管段外侧应采用刚性模架体系,避免对拉螺栓的使用。

4.外侧墙及顶板浇筑,在外侧墙内合理设置冷却管、冷却管布置方式经计算及试验确定,以避免出现温差裂缝。

5.根据管段不同部位采取相应的混凝土养护措施,确保混凝土质量。

底板养护草包(土工布)覆盖和蓄水养护;

侧墙拆模后对外墙面进行喷淋养护,喷淋管一般采用塑料管,铺设在外侧墙顶部;

顶板面则覆盖土工布蓄水养护,内模拆除后在内孔两侧孔口处用土工布挂帘法封盖,保湿养护时需经常在管内浇水,保持管内相对湿度大于85%以上。

6.管段水平施工缝一般设置在底板斜腋上方30em左右,施工缝内设置钢板止水带。

侧墙施工缝在混凝土达到一定强度后进行充分凿毛处理,以提高接缝的混凝土结合强度。

管节分段施工缝,采用橡胶钢片止水带,施工缝同样要做好充分的凿毛处理工作。

7.后浇带施工时间必须待相邻管段沉降基本稳定、混凝土达到一定强度且混凝土完成大部分收缩后进行。

后浇带与相邻管段的浇筑间隔时间一般不宜少于40d。

后浇带的施工分为底板、中隔墙(侧墙)和顶板两步浇筑,后浇带混凝土宜采用微膨胀性混凝土,以减少局部收缩产生开裂影响管节施工质量。

8.管节端封墙虽然为临时设施,但浮运和沉放阶段需承受较大的水压力。

施工中应特别注意端封墙内侧的型钢受力体系的安装质量,确保安全。

9.端钢壳施工要采取必要的措施来保证端钢壳的外形、垂直度、倾角、顺直度、面板平整度均控制在允许偏差范围内。

端钢壳的支架体系应设置调节装置,便于在施工期间调整端钢壳相关外形参数。

安装GINA止水带的面板必须在混凝土浇筑完毕并达到强度后安装,实测管节和端钢壳的外形,进行精确放样后安装。

六、质量标准

1.管段几何尺寸允许误差(以上海外环隧道为例):

内孔净宽:

0~+

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1