拉森钢板桩计算文档格式.docx
《拉森钢板桩计算文档格式.docx》由会员分享,可在线阅读,更多相关《拉森钢板桩计算文档格式.docx(21页珍藏版)》请在冰豆网上搜索。
用Φ630×
12的直撑钢管和Φ377×
10的斜撑钢管。
为此,共需12米长的钢板桩数量:
N=(A+B)×
2?
0.4=(17.5+14.35)×
0.4=160根。
本方案基坑开挖深度最深按6.30m计算,设二道水平支撑。
第一道水平钢支撑中心布置在103.25m处,第二道水平钢支撑中心布置在100.25m处,这样下道支撑距基坑底约为1.70m。
4钢板桩支撑体系设计及验算以及基底土抗隆起验算
对内支撑基坑,造成基坑失稳的直接原因一般可归纳为两类:
结构不足(墙体、支撑等的强度或刚度不足)和地基土强度不足。
根据地质资料和现场实际情况分析,本工程可不考虑管涌和承压水,不进行钢板桩的抗渗透稳定性验算。
本设计主要计算钢板桩、围檩、支撑在施工全过程中的强度和稳定性,以及为防止基坑整体滑动和基底土隆起所需的钢板桩插入深度。
根据地质报告,计算出排水管道施工区域土的有关加权平均指标如下:
3γ=18KN/mφ=20º
C=8kpa
本设计计算时取C=0,不考虑地下水的作用。
仅考虑被动土压力修正系数k=1.6(见《深基坑工程设计施工手册》P.286),4.1土压力计算
2主动土压力系数Ka=tg(45º
-20º
/2)=0.49
2º
被动土压力系数Kp=tg(45+20º
/2)=2.04
被动土压力修正系数k=1.6,则:
Kp=kKp=3.264
如图A所示,图中B点为R和R间的中间点(1/2点),C点为R与基坑底面间的中点。
近似计算时,即认为R等于e与e间的三122101
2角形荷载,R等于e与e间的梯形荷载,土压力为:
e=KγH。
另考虑基坑边土体和机械行走等产生的附加荷载,按20KN/m计算。
212iai
上式中H为土压力计算高度。
i
其中H=1600;
H=3100;
H=4600;
H=5450;
H=6300。
1B2C3
经计算:
e=00
e1=KaγH1=0.49×
18×
1.6=14.112KN/m2
eB=KaγHB=0.49×
3.1=27.342KN/m2
e2=KaγH2=0.49×
4.6=40.572KN/m2
eC=KaγHC=0.49×
5.45=48.069KN/m2
e3=KaγH=0.49×
6.3=55.566KN/m23
设支撑间间距均为L=4.50m,则通过公式:
Ri={[(e+e)/2]*h+qKa*h}L可计算出支撑反力R、Rnn+1n+1n+112
2上式中h=0;
h=3.1m;
h=2.35m;
Q=qKa=20×
0.49=9.8KN/m。
00BBC
则:
R=[(0+27.342)?
2×
3.1+20×
0.49×
3.1]×
4.5=327.420KN1
R=[(27.342+48.069)?
2.35+20×
2.35]×
4.5=502.371KN2
e0
e1
eB
B
1
2
C
3
S
O
M
e4
Pp
e3
Pa2
ec
Pa1
qka
R1
R2
2q=20kN/m
图A:
钢板桩支护计算示意图
4.2钢支撑强度和稳定性验算
2本工程二道长钢支撑均采用φ630×
12钢管。
已知Rmax=502.371KN,A=232cm,,=21.8cm,[f]=200Mpa。
取安全系数为K=2.0。
A、对钢管支撑长度15.0m的直钢管,其长细比λ=115.38,查表得φ=0.5。
则由公式N/(φ×
Α)?
[f]/K可计算出15米长直支撑满足稳定性要求的允许压力为:
Nz=1160KN>
Rmax=502.371KN符合要求。
2本工程二道钢斜支撑均采用φ377×
10钢管。
已知Rmax=502.371KN,A=115cm,,=13.0cm,[f]=200Mpa。
B、对钢管支撑长度约6.0m的斜钢管,其长细比λ=46.15,查表得φ=0.903。
则由公式(N/(φ×
[f]/K可计算出6米长斜支撑满足稳定性要求的允许压力为:
Nx=1038.45KN>
?
2Rmax=710.353KN符合要求。
由此可见支撑的强度和稳定性均满足要求。
4.3钢板桩抗弯验算
两道支撑间及下道支撑与基坑底面之间的钢板桩弯矩可以近似按照两端简支梁承受梯形荷载计算。
查《静力计算手册》,可按以下公式计算钢板桩的最大弯矩:
232M=[qL/6]?
{[2υ-μ(1+μ)]/(1-μ)}max2
2上式中μ=q/q;
υ=?
(μ+μ+1)/312
μ=0.475μ=0.7711223
υ=0.753υ=0.8881223
由此可计算出:
A、两道支撑间之间钢板桩的最大弯矩为:
232M=(50.37×
3?
6)×
{[2×
0.753,0.475(1+0.475)]?
(1,0.475)}maxB
=42.031KN.m/m
B、下道支撑与基坑底面之间钢板桩的最大弯矩:
232M=(65.37×
1.7?
0.888,0.753(1+0.753)]?
(1,0.753)}maxC
=10.256KN.m/m
型拉森钢板桩W=2043cm/m,安全系数K=2。
-6f=M/W=42031/(2043×
10)=20.573Mpa,[f]/2=100MpamaxmaxB
因此钢板桩的抗弯强度可以满足要求。
4.4工字钢围檩抗弯抗压验算
(1)、抗弯验算
本工程围檩采用40号工字钢,详见平面布置图。
支撑与围檩连接的计算简图见图B。
150
4200
钢管支撑
40#工字钢围檩
钢板桩
图B
#3已知作用在下道围檩的均布荷载较大,为Q=R/4.5m=111.638KN/m,40工字钢对其x—x轴的截面系数W=1090cm;
f=200Mpa。
2
将围檩视为多跨连续梁,净跨度仍按4.2m计算,最大弯距在跨中,若安全系数取K=2.0。
计算时按两跨连续梁计算,则查《静力计算手册》可得:
22M=0.07QL=0.07×
111.638×
4.2=137.850KN-m=1378500N-cmmaxj
22M/W=1378500/1090=1264.680N/cm<
f/2.0=10000N/cmmax
符合要求。
(2)、压弯验算
当斜向支撑作用在围檩上时,围檩是压弯构件,因此还应进行围檩在压弯状态下的强度。
按公式(N/An)+[Mx/(γx?
Wnx)]?
f计算
2上式中γx——截面塑性发展系数,取1.05;
N——轴心压力,为502.371;
An——净截面面积,为86.1cm;
Mx——最大弯矩;
Wnx——截面矩。
(N/An)+[Mx/(γx?
Wnx)]
=(502.371/86.1)+[13785.0/(1.05×
1090)]
22=17.88KN/cm<
f=20KN/cm符合要求。
从以上计算可知,当支撑间距为4.5米时,工字钢围檩可以满足要求。
考虑到影响土体侧压力的因素很多,为了确保整个支撑体系的稳定、安全,现场应配备足够的Φ377钢管和40#工字钢,以便对可
能发生的支撑体系变形进行加固。
所有钢结构焊缝均应满焊,焊缝厚度应符合钢结构规范的要求。
4.5钢板桩变形验算
按图A计算简图计算,1、2两点间钢板桩所受弯矩最大,因此只计算该跨的钢板桩最大变形量,按梯形荷载一端固定、一端简支
计算,参照《建筑结构静力计算手册》P.161,其计算公式为:
32324fx=lx[5q(1-3ξ+2ξ)+2q(1-2ξ+ξ)]/240EI10
上式中:
l——3.0m;
q——e+qKa=23.912KN/m;
11
q——e-e=26.46KN/m;
021
ξ——x/l;
1点处ξ1=0,跨中ξ=0.5;
0
322E——钢板桩弹性模量=206×
10Mpa=206×
10KN/cm;
4I——钢板桩截面惯性矩=31.95cm/m;
X——1点距变形计算点的距离。
1点处X=0,跨中X=1.5m。
10?
1点处钢板桩位移:
3f=lX[5q+2q]/240EI=01110
跨中B点处钢板桩位移:
32324f=lX[5q(1-3ξ+2ξ)+2q(1-2ξ+ξ)]/240EI0010
f=0.08cm0
以上计算所得数值满足三级基坑围护结构位移值的要求,该变形量不会造成基坑周边土体的扰动,因此围护结构和周边建构筑物
是安全的。
4.6坑底土抗隆起验算
由于基坑下部为深厚软土层,因此需验算坑底软土的承载力。
如图C所示,采用此滑动模型进行验算。
先以O为圆心,以OB为半
径作圆,交坑底水平线于E、F。
再由E作垂直线交地面线于D。
2设想滑动面为DEBF。
并设地面有临时荷载q=20KN/m。
取C=C=8Kpa。
(不计算基坑内土的抗滑作用)12
2此时抗滑力矩=CHOB+(1/2)CπOB12
滑动力矩=(1/2)(q+γH)OB
取抗滑系数K=1.5
2则2[CHOB+(1/2)CπOB]/(q+γH)OB?
1.512
计算出OB=3.95m,实际取1.2*OB=4.7m,这样偏于安全。
因此钢板桩理论计算长度为0.4+6.3+4.7=11.4m,而本工程钢板桩的实际总长度为12m,此时坑底土不会出现隆起现象。
F
A
E
D
γH
q
C2
C1
图C
多项施工实例阐明了拉森桩在围护措施上所显示的作用,大力推广拉森桩在特殊土层条件的运用,勇与创新,大胆尝试,敢于充当做第一个吃螃蟹的人,展望未来数年拉森桩在我国将产生一次大的飞跃。
钢板桩施工方案
一、工程概况:
宁波市综合办案楼改建工程消防水池及水泵房位于底层U?
H轴×
1?
4轴间,其平面尺寸为10.2M*15.0M,消防水池及水泵房承台底挖土深度为3.5M,其北侧2.5M处为2层临时宿舍楼,东侧2M处为2层原有砖混结构办公楼。
其周围的堆载较大,挖土深度又较深,考虑到工期及成本,拟采用钢板桩支护方案。
二、钢板桩围护的设计
消防水池基坑设计土方挖深为-3.5米,基坑北侧为临时宿舍,东临建筑物,为保证安全施工及周边建筑物不受影响,基坑北侧与东侧采用钢板桩围护,设计选用8米长拉森?
型(60Kg/m)钢板桩,基坑挖深为3米左右,钢板桩入土深度取5米长。
2.1、防倾覆计算(如图一示)
根据工程勘察报告,钢板桩所处土层为淤泥质粘土,土的重度γ=17.6内摩擦角р=8.4?
粘聚力с=10.5
主动土压力Ea
Ea=1/2γ(H+t)2tg2(45?
-р/2)-2?
C?
(H+t)?
tg(45?
-р/2)+2C2/γ=1/2*17.6*(13+5)2tg240?
.8-2*10.5*(3+5)*tg240?
.8+(2*10.52/17.6)=287.15KN
h1=1/3*[H+t-2C/γ?
tg40?
.8]=1/3*(3+5-2*10.5/17.6*tg40?
.8)=2.206m
被动土压力Ep
Ep=1/2γt2tg2(45?
+р/2)+2C?
t?
+р/2)
=1/2*17.6*52*tg249.2+2*10.5*5*tg49.2=416.92KN
h2=t/3?
(t?
γtg?
49.2+6C)/(t?
49.2+4C)
=5/3*(5*17.6*tg?
49.2+6*10.5)/(5*17.6*tg?
49.2+4*10.5)=1.91M
主动土压力Ea对e点的力矩m1
m1=Eah1=287.15*2.206=633.45KN?
m
被动土压力Ep对e点的力矩m2
m2=Eph2=416.92*1.91=796.32KN?
防倾覆安全系数m2/m1=796.32/633.45=1.26<
2故不符安全要求。
2.2、内力计算拉森?
号钢板桩W=1600CM3
最大弯矩MC=m2-m1=796.32-633.45=162.87KN?
f=(162.87*103*0.74)/(1600*10-6)=75.33mpa<
1/2[f]
=100mpa故内力计算符合要求
综上所述采用单排钢板桩围护不符合防倾覆安全要求,所以本基坑围护须采用双排钢板桩,其布置图如附图二所示。
2.3、降水、排水措施
因施工现场西侧临河,根据地质勘察报告显示,地下水位高度约0.6M,水源较高且水源丰富,施工期间必须考虑降水、排水措施。
在基坑的北侧及东侧设降水井,作法如下:
用φ600的钻孔桩机钻成φ600的孔,深10M,用8φ12,φ6@200的骨架外包钢板网做成护笼,放入φ600孔内以防止土方塌方便于水泵抽水。
施工期间用水泵通过降水井不停降水。
同时土方房地产E网开挖好后在基坑内四周设排水沟,并在四角设集水井,做好有组织的排水。
2.4两排钢板桩间距设定为800,为了提高钢板桩支护的安全性,前排钢板桩上口用钢板梁全部连接起来,再用钢丝绳固定于地描上。
2.5支护结构监测
1、深层土体位移观测:
在钢板桩围护结构的北侧和东侧设置深层土体位移观测孔,设观测孔2个,埋深12米。
2、水平位移观测:
在钢板桩支护结构梁、邻近原有两层建筑物及临时宿舍上设水平位移观测点;
2、沉降观测:
在钢板桩支护结构梁、基坑内外土体、邻近原有两层建筑物及临时宿舍上设沉降观测点;
4、基坑支护结构变形报警值:
深层土体位移50MM,支护梁水平位移30MM,基坑四周外侧土体沉降20MM。
三、钢板桩支护开槽施工
3.1、钢板桩支护开挖施工工艺流程:
打钢板桩?
挖土?
基础砼浇注?
墙板及顶板砼浇注?
模板拆除?
防水施工?
土方回填
3.2、钢板桩施工要点
、根据基坑边线,先开挖钢板桩槽,宽度为0.80m,深度0.50m左右。
采用长臂液压挖掘机施打,为保证钢板桩的打入质量,采用夹板定位的
根据《危险性较大工程安全专项施工方案编制及专家论证审核办法》的规定,上海市浦东铁路金汇港大桥深基坑围堰工程,必须编制专项施工方案且通过专家论证。
为了编制安全可靠、经济合理的优化方案,我们以深埋板桩和围檩计算为主,进行了深基坑围檩支护计算。
在此基础上,我们结合本公司施工的南京雍六高速公路马汊河大桥、南京马汊河葛新桥,山东枣庄市运河特大桥深水基坑围堰支护的经验,针对上海地区淤泥粉质软土的特点,编制了上海市浦东铁路金汇港大桥深基坑围堰支护加固安全专项施工方案,一次通过了专家评审,并在实施中确保了工程安全、质量和工期。
本文就深基坑围堰的计算成果作简要介绍。
一、工程概况
1.工程概况
浦东铁路金汇港特大桥河道宽95m,主跨65.1m,主跨桥墩位于金汇港河内,两桥墩中心距离岸边约15.0m,桥墩基础为双排钻孔桩,每个墩桩基为8根,共16根桩(钻孔桩直径1.25m、桩长56.0m)。
承台底标高为-3.90m,承台顶标高为-1.2m。
水深约3.5m,河流测时水位2.68m,最高通航水位3.0m,百年一遇水位3.77m。
本工程水文地质如下:
河床下为?
-1层,淤泥粉质黏土,γ=17.8kn/m3,θ=18?
,厚3-4m;
层:
淤泥粉质黏土,γ=17.1kn/m3θ=10.1?
;
素填土γ=19kn/m3,θ=19?
2.基坑围护方案选择
根据本工程地基土质差,地下水位高等不利因素,决定采用拉森钢板桩支护。
钢板桩具有重量轻、强度高、锁口紧密、重复使用、施工方便、施工速度快等优点,同时本单位具有钢板桩深基坑施工方面的相应经验。
施工流程:
打拉森钢板桩围堰?
钻孔桩施工平台?
钻孔桩施工?
抽水?
高压水枪清淤(人工挖土)?
施工承台、墩身及顶帽?
拉森钢板桩拆除承台围堰根据施工的需要,设计尺寸为17.2×
11.7m(见图)。
离岸侧临水,近岸侧为素填土。
二、多支撑钢板桩计算
支撑层数和间距的布置是钢板桩施工中的重要问题,根据现场的支撑材料和开挖深度(基底至水面7.0m),我们采取在钢板桩内侧加三层围檩并设置支撑,按多支撑进行钢板桩
计算,计算时仍采用等值梁法。
围堰采用拉森?
型钢板桩,w=2037cm3,[f]=200mpa。
围堰顶部荷载按70kn/m2计算。
钢板桩拟采用15m(标准尺寸为10、12、15m)。
(1)计算钢板桩承受土压力,绘出土压力分布图a.γ、θ按16.5m深,加权平均计算γ=(4.5×
19,4.0×
17.8,8×
17.10)?
16.5=17.79kn/;
m3θ,(4.5×
19,4×
18,8×
10.1)?
16.5,14.44。
b.计算土压力系数kp=tg2(45。
,14.44。
2)=1.66ka=tg2(45。
-14.44。
2)=0.6c.板桩压力pa=γh1ka=10.67kn/m2;
pb=γh2ka=44.83kn/m2;
pd=γh3ka=78.99kn/m2d.土压力分布图
(2)计算板桩上土压力等于0的点距挖土面的距离y设距地面y处板桩前的被动土压力等于板桩后的主动土压力,考虑板桩与土的摩擦作用,对板桩前的土压力乘以修正系数k,查表k=1.378。
γkkpy=γka(h,y)=pb,γkayy=pb/[γ×
(k×
kp-ka)]=78.99/[17.79×
(1.378×
1.66-0.6)]=2.63m
(3)多支撑钢板桩土压力简化模型计算截取ac梁,在c点加自由支承,形成与ad梁上ac段的近似等值梁(如上图),按多跨连续梁用弯距分配法计算(计算简略)。
a、绘制弯矩图b、计算支座反力b处支座反力为pb,由?
mc=0得:
pb=28.11knc处支座反力为pc,由?
md=0得:
pc=154.74kn由?
md=0,取de为隔离体pe*2.63,45.85-1/2*78.99*2.63*1/3*2.63=0pe=17.19knpd=1/2*78.99*(3.2+3.2+2.63+1.0)-pb-pc-pe=196knc多支撑板桩入土深度检算x=6pe/[γ×
kp-ka)]=1.85mt0=x,y=4.48m;
t=1.1×
t0=4.93m;
l=h,t=4.93,7.4=12.33钢板桩长度满足要求。
(4)多支撑钢板桩围檩检算围檩横梁长17.2m,每隔2.90m设一道支撑(见下图),横梁按连续梁用弯距分配法计算,并选择工字钢横截面。
a、计算节点b、c、d、e处弯距分配
系数b点:
sba=3isbc=4i?
sb=7iμba=3/7μbc=4/7c点:
scb=4iscd=4i?
sd=8i;
μcb=1/2μcd=1/2d点:
sdc=4isde=4i?
sd=8iμdc=1/2μde=1/2e点:
sef=3ised=4i?
se=7iμef=3/7μed=4/7b、计算各杆端固端弯
距mfba=1/8ql2=1/8*196.1*2.92=206.15knmmfbc=-1/12ql2=-1/12*196.1*2.92=-137.43knmmfcb=-mfbc=-dc=mfed=-mfde=mfcd=137.43knmmfba=-1/8ql2=-1/8*196.1*2.962=-206.15knm
c、弯矩分配计算d、绘制弯矩图:
跨中弯矩:
mab=1/8ql2-1/2*173.6=119.35knmmbc=1/8ql2-1/2*(173.6+130.2)=54.25knmmbc=1/8ql2-130.2=75.95knmc、选择工字钢截面由上
可得横梁所受最大弯距在b处mmax=173.6knm,采用40c工字钢时:
σmax=mmax/w=173.6*103/(1190*10-6)=146mpaσmax,[σ]/k=[σ]/1.5=235/1.5=157mpa采用40c型号的工字钢。
(5)多支撑板桩围檩支撑检算a、求支座反力由?
mb=0na*2.9+173.6-196.1*2.92*1/2=0na=224.5kn由?
mc=0na*2.9*2+nb*2.9+130.2-1/2*196.1*(2*2.9)2=0nb=643.5knnc=1/2(196.1*14.5-2*224.5-2*643.5)=553.7knb、斜支撑的轴力计算b处斜支撑轴力n=nb/sinα=643.5/0.63=1021.4knc处斜支撑轴力n=nc/sinα=553.7/0.63=878.89knc、选斜支撑截面?
b处斜支撑b处斜支撑长度为:
i,2.342+2.92=3.73选用2根[22槽钢,为b类截面,其截面几何性质如下:
ix=2*2570=5140iy=2.21cmiy=176cm4a=36.246cm4iy=2*[176+(7.9-2.21)2*36.246]=2699cm4最小惯性半径:
iy=2699/2a=6.1cm杆件两端焊接,按固定端确定长度系数:
μ=0.5长细比:
λ=μl1/iy=0.5*373/6.1=30.6压杆稳定系数查表:
φ=0.932计算应力:
σ=n/φa=1021.4*103/(0.932*2*36.246