扫描电镜基本知识范围doc文档格式.docx

上传人:b****8 文档编号:22576877 上传时间:2023-02-04 格式:DOCX 页数:12 大小:26.22KB
下载 相关 举报
扫描电镜基本知识范围doc文档格式.docx_第1页
第1页 / 共12页
扫描电镜基本知识范围doc文档格式.docx_第2页
第2页 / 共12页
扫描电镜基本知识范围doc文档格式.docx_第3页
第3页 / 共12页
扫描电镜基本知识范围doc文档格式.docx_第4页
第4页 / 共12页
扫描电镜基本知识范围doc文档格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

扫描电镜基本知识范围doc文档格式.docx

《扫描电镜基本知识范围doc文档格式.docx》由会员分享,可在线阅读,更多相关《扫描电镜基本知识范围doc文档格式.docx(12页珍藏版)》请在冰豆网上搜索。

扫描电镜基本知识范围doc文档格式.docx

11.当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接穿隧通过此狭窄能障并离开阴极。

场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。

12.场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。

场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。

利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。

第一(上)阳极主要是改变场发射的拔出电压(extractionvoltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。

13.要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。

由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。

14.冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。

能量散布最小,故能改善在低电压操作的效果。

为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。

它的另一缺点是发射的总电流最小。

15.热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。

热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9torr)操作。

虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。

16.萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。

其发射电流稳定度佳,而且发射的总电流也大。

而其电子能量散布很小,仅稍逊于冷场发射式电子枪。

其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。

17.场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。

一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。

18.由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ionpump),在样品室中,配置了2组扩散泵(diffusionpump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(coldtrap),协助保持样品室的真空度。

19.平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(stepvacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。

平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gunvalve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。

20.场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

21.在电子显微镜中须考虑到的像差(aberration)包括:

衍射像差(diffractionaberration)、球面像差(sphericalaberration)、散光像差(astigmatism)及波长散布像差(即色散像差,chromaticaberration)。

22.面像差为物镜中主要缺陷,不易校正,因偏离透镜光轴之电子束偏折较大,其成像点较沿轴电子束成像之高斯成像平面(Gaussimageplane)距透镜为近。

23.散光像差由透镜磁场不对称而来,使电子束在二互相垂直平面之聚焦落在不同点上。

散光像差一般用散光像差补偿器(stigmator)产生与散光像差大小相同、方向相反的像差校正,目前电子显微镜其聚光镜及物镜各有一组散光像差补偿器。

24.光圈衍射像差(Aperturediffraction):

由于电子束通过小光圈电子束产生衍射现象,使用大光圈可以改善。

25.色散像差(Chromaticaberration):

因通过透镜电子束能量差异,使得电子束聚焦后并不在同一点上。

26.电子束和样品作用体积(interactionvolume),作用体积约有数个微米(m)深,其深度大过宽度而形状类似梨子。

此形状乃源于弹性和非弹性碰撞的结果。

低原子量的材料,非弹性碰撞较可能,电子较易穿进材料内部,较少向边侧碰撞,而形成梨子的颈部,当穿透的电子丧失能量变成较低能量时,弹性碰撞较可能,结果电子行进方向偏向侧边而形成较大的梨形区域。

27.在固定电子能量时,作用体积和原子序成反比,乃因弹性碰撞之截面积和原子序成正比,以致电子较易偏离原来途径而不能深入样品。

28.电子束能量越大,弹性碰撞截面积越小,电子行走路径倾向直线而可深入样品,作用体积变大。

29.电子束和样品的作用有两类,一为弹性碰撞,几乎没有损失能量,另一为非弹性碰撞,入射电子束会将部份能量传给样品,而产生二次电子、背向散射电子、俄歇电子、X光、长波电磁放射、电子-空位对等。

这些信号可供SEM运用者有二次电子、背向散射电子、X光、阴极发光、吸收电子及电子束引起电流(EBIC)等。

30.二次电子(SecondaryElectrons):

电子束和样品作用,可将传导能带(conductionband)的电子击出,此即为二次电子,其能量约50eV。

由于是低能量电子,所以只有在距离样品表面约50~500深度范围内所产生之二次电子,才有机会逃离样品表面而被侦测到。

由于二次电子产生的数量,会受到样品表面起伏状况影响,所以二次电子影像可以观察出样品表面之形貌特征。

31.背向散射电子(BackscatteredElectrons):

入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。

背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。

由于背向散射电子产生于距样品表面约5000的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。

32.X光:

入射电子和样品进行非弹性碰撞可产生连续X光和特征X光,前者系入射电子减速所放出的连续光谱,形成背景决定最少分析之量,后者系特定能阶间之能量差,可藉以分析成分元素。

33.电子束引致电流(Electron-beaminducedCurrent,EBIC):

当一个p-n接面(Junction)经电子束照射后,会产生过多的电子-空位对,这些载子扩散时被p-n接面的电场收集,外加线路时即会产生电流。

34.阴极发光(Cathodoluminescence):

当电子束产生之电子-空位对再结合时,会放出各种波长电磁波,此为阴极发光(CL),不同材料发出不同颜色之光。

35.样品电流(SpecimenCurrent):

电子束射到样品上时,一部份产生二次电子及背向散射电子,另一部份则留在样品里,当样品接地时即产生样品电流。

36.电子侦测器有两种,一种是闪烁计数器侦测器(Scintillator),常用于侦测能量较低的二次电子,另一种是固态侦测器(solidstatedetector),则用于侦测能量较高的反射电子。

37.影响电子显微镜影像品质的因素:

A.电子枪的种类:

使用场发射、LaB6或钨丝的电子枪。

B.电磁透镜的完美度。

C.电磁透镜的型式:

In-lens,semiin-lens,off-lens

D.样品室的洁净度:

避免粉尘、水气、油气等污染。

E.操作条件:

加速电压、工作电流、仪器调整、样品处理、真空度。

F.环境因素:

振动、磁场、噪音、接地。

38.如何做好SEM的影像,一般由样品的种类和所要的结果来决定观察条件,调整适当的加速电压、工作距离(WD)、适当的样品倾斜,选择适当的侦测器、调整合适的电子束电流。

39.一般来说,加速电压提高,电子束波长越短,理论上,只考虑电子束直径的大小,加速电压愈大,可得到愈小的聚焦电子束,因而提高分辨率,然而提高加速电压却有一些不可忽视的缺点:

A.无法看到样品表面的微细结构。

B.会出现不寻常的边缘效应。

C.电荷累积的可能性增高。

D.样品损伤的可能性增高。

因此适当的加速电压调整,才可获得最清晰的影像。

40.适当的工作距离的选择,可以得到最好的影像。

较短的工作距离,电子讯号接收较佳,可以得到较高的分辨率,但是景深缩短。

较长的工作距离,分辨率较差,但是影像景深较长,表面起伏较大的样品可得到较均匀清晰的影像。

41.SEM样品若为金属或导电性良好,则表面不需任何处理,可直接观察。

若为非导体,则需镀上一层金属膜或碳膜协助样品导电,膜层应均匀无明显特征,以避免干扰样品表面。

金属膜较碳膜容易镀,适用于SEM影像观察,通常为Au或Au-Pd合金或Pt。

而碳膜较适于X光微区分析,主要是因为碳的原子序低,可以减少X光吸收。

42.SEM样品制备一般原则为:

A.显露出所欲分析的位置。

B.表面导电性良好,需能排除电荷。

C.不得有松动的粉末或碎屑(以避免抽真空时粉末飞扬污染镜柱体)。

D.需耐热,不得有熔融蒸发的现象。

E.不能含液状或胶状物质,以免挥发。

F.非导体表面需镀金(影像观察)或镀碳(成份分析)。

43.镀导电膜的选择,在放大倍率低于1000倍时,可以镀一层较厚的Au,以提高导电度。

放大倍率低于10000倍时,可以镀一层Au来增加导电度。

放大倍率低于100000倍时,可以镀一层Pt或Au-Pd合金,在超过100000时,以镀一层超薄的Pt或Cr膜较佳。

44.电子束与样品作用,当内层电子被击出后,外层电子掉入原子内层电子轨道而放出X光,不同原子序,不同能阶电子所产生的X光各不相同,称为特征X光,分析特征X光,可分析样品元素成份。

45.分析特征X光的方式,可分析特征X光的能量分布,称为EDS,或分析特征X光的波长,称为WDS。

X光能谱的分辨率,在EDS中约有100~200eV的分辨率,在WDS中则有5~10eV的分辨率。

由于EDS的分辨率较WDS差,因此在能谱的解析上,较易产生重迭的情形。

46.由于电子束与样品作用的作用体积(interactionvolume)的关系,特征X光的产生和作用体积的大小有关,因此在平面的样品中,EDS或WDS的空间分辨率,受限于作用体积的大小。

扫描电镜的工作原理

扫描电子显微镜的制造依据是电子与物质的相互作用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。

通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。

同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。

背散射电子

背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。

弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。

非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。

非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。

从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。

背反射电子的产生范围在100nm-1mm深度。

背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。

背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。

二次电子

二次电子是指背入射电子轰击出来的核外电子。

由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。

如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

二次电子来自表面5-10nm的区域,能量为0-50eV。

它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。

由于它发自试样表层,入射电子还没有被多次反射,因此产生二次电子的面积与入射电子的照射面积没有多大区别,所以二次电子的分辨率较高,一般可达到5-10nm。

扫描电镜的分辨率一般就是二次电子分辨率。

二次电子产额随原子序数的变化不大,它主要取决与表面形貌。

特征X射线

特征X射线试原子的内层电子受到激发以后在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。

X射线一般在试样的500nm-5mm深处发出。

俄歇电子

如果原子内层电子能级跃迁过程中释放出来的能量不是以X射线的形式释放而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。

因每一种原子都由自己特定的壳层能量,所以它们的俄歇电子能量也各有特征值,能量在50-1500eV范围内。

俄歇电子是由试样表面极有限的几个原子层中发出的,这说明俄歇电子信号适用与表层化学成分分析。

产生的次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。

图像为立体形象,反映了标本的表面结构。

为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。

原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。

扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。

如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;

对x射线的采集,可得到物质化学成分的信息。

正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。

光学显微镜(OM)、TEM、SEM成像原理比较

由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪获得。

具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面2材料形貌分析观察作栅网式扫描。

聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。

二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。

扫描电镜的应用

1、显微结构的分析

在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。

扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;

同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。

扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。

由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。

主要表现为:

⑴力学加载下的微观动态(裂纹扩展)研究;

⑵加热条件下的晶体合成、气化、聚合反应等研究;

⑶晶体生长机理、生长台阶、缺陷与位错的研究;

⑷成分的非均匀性、壳芯结构、包裹结构的研究;

⑸晶粒相成分在化学环境下差异性的研究等。

2、纳米尺寸的研究

纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的颗粒。

纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。

纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。

纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。

另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。

图2所示是纳米钛酸钡陶瓷的扫描电镜照片,晶粒尺寸平均为20nm。

3、铁电畴的观测

压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。

随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。

铁电畴(简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。

电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察(电畴壁的迁移)。

扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。

因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。

对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。

图3是扫描电子显微镜观察到的PLZT材料的90电畴。

扫描电子显微镜与其他设备的组合以实现多种分析功能。

在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 成考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1