高中数学学业水平考知识点大全Word下载.docx
《高中数学学业水平考知识点大全Word下载.docx》由会员分享,可在线阅读,更多相关《高中数学学业水平考知识点大全Word下载.docx(6页珍藏版)》请在冰豆网上搜索。
(4)配方法;
(5)换元法;
(6)反函数法(逆求法);
(7)判别式法;
(8)复合函数法;
(9)三角代换法;
(10)基本不等式法等
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
也就是说:
“值域”是一个“范围”,而“范围”却不一定是“值域”。
高中数学学业水平考知识点2
等腰直角三角形面积公式:
S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
S=ab/2。
且由等腰直角三角形性质可知:
底边c上的高h=c/2,则三角面积可表示为:
S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:
稳定性,两直角边相等直角边夹一直角锐角45°
,斜边上中线角平分线垂线三线合一。
高中数学学业水平考知识点3
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:
有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:
以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:
用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:
两底面是对应边平行的全等多边形;
侧面、对角面都是平行四边形;
侧棱平行且相等;
平行于底面的截面是与底面全等的多边形。
(2)棱锥
有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
用各顶点字母,如五棱锥
侧面、对角面都是三角形;
平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
用各顶点字母,如五棱台
①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:
以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:
用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:
正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图(从上向下)
注:
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
高中数学学业水平考知识点4
直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴ox、oy、使∠xoy=45°
(或135°
);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半.
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:
①表面积:
S=S侧+2S底;
②侧面积:
S侧=;
③体积:
V=S底h
⑵锥体:
S=S侧+S底;
V=S底h:
⑶台体①表面积:
S=S侧+S上底S下底②侧面积:
S侧=
⑷球体:
S=;
②体积:
V=
4、位置关系的证明(主要方法):
注意立体几何证明的书写
(1)直线与平面平行:
①线线平行线面平行;
②面面平行线面平行。
(2)平面与平面平行:
①线面平行面面平行。
(3)垂直问题:
线线垂直线面垂直面面垂直。
核心是线面垂直:
垂直平面内的两条相交直线
5、求角:
(步骤-------Ⅰ.找或作角;
Ⅱ.求角)
⑴异面直线所成角的求法:
平移法:
平移直线,构造三角形;
⑵直线与平面所成的角:
直线与射影所成的角
高中数学学业水平考知识点5
高中数学函数函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:
A→B为从函数A到函数B的一个函数.记作:
y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;
与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.
注意:
函数定义域:
能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
?
相同函数的判断方法:
①表达式相同(与表示自变量和函数值的字母无关);
②定义域一致(两点必须同时具备)
高中数学学业水平考知识点大全