文字编辑工具作品集IWord文档下载推荐.docx
《文字编辑工具作品集IWord文档下载推荐.docx》由会员分享,可在线阅读,更多相关《文字编辑工具作品集IWord文档下载推荐.docx(18页珍藏版)》请在冰豆网上搜索。
小结:
无论是一个蛋糕,还是一个平面图形,只要把它平均分成二份,每一份就是它的。
折一折(认识1/4)
大家想不想认识四分之一?
(师板书)那好,大家就选择自己喜欢的图形,利用自己喜欢的方式来表示你喜欢的四分之一,
(巡视时搜集同是而折法不同或者形状不同的作品)
问:
老师手中这几个图形形状不同,为什么涂色部分都是它的1/4?
不同的图形,只要平均分的份数相同,其中的一份就能用相同的分数来表示。
折一折(认识几分之一)
你们还想认识几分之一?
自己动手操作
学生汇报。
小组之间说所折的分数。
4.
汇报:
你把这个图形平均分成几份,涂色部分是它的几分之一?
学生说出自己的想法。
5.
动手折一折。
6.
汇报自己的涂色部分是哪个分数?
通过折一折、涂一涂等活动,培养学生的动手能力,并在操作的过程中,理解分数的意义。
(三)应用拓展
看图写出分数
看图看图估一估,再填上合适的分数问
巧克力(1/8)
还能联想到几分之一?
同样一块巧克力,观察的角度不同,得到的分数也就不同。
学生根据图中的涂色部分写出分数后,在全班订正。
根据图形的大小估计出涂色部分用哪个分数来表示。
想象出还可以用哪个分数来表示。
了解学生对分数意义的理解。
通过学生的各个感官来认识分数,进一步增强对分数意义的理解。
(四)全课总结
这节课你有什么收获吗?
学生说说自己的收获。
培养学生的语言表达能力
《有理数的加法》教学设计
(一)创设情境,引入新课
1、2010年6月11日至7月11日,第19届世界杯足球赛在南非举行。
来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。
(出示PPT2)
2、(出示PPT3)小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。
积分相同时,净胜球多者为胜(把进球数记为正数,失球数记为负数,进球数与失球数的和叫做净胜球数)。
以B组为例,进入十六强的是阿根廷和韩国。
国家
赛
胜
平
负
得分
阿根廷
3
9
韩国
1
4
希腊
2
尼日利亚
3、(出示PPT4)再以A组为例,A组积分榜
进球
失球
净胜球
乌拉圭
7
+4
墨西哥
+3
-2
南非
-5
法国
+1
-4
师:
从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?
此时则需要计算各队净胜球数。
你能列出计算各队净胜球数的算式吗?
学生看图表,
思考问题。
学生列出计算净胜球数算式。
利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣
体会学习有理数运算的必要性。
(二)探索新知
1、师:
净胜球数的计算实际上涉及到有理数的加法。
今天我们就来研究有理数的加法运算(板书1:
1.4 有理数的加减----一、有理数的加法)。
探究一
我们已经知道两个非负有理数相加的方法,现在数的范围扩大了,两个有理数相加,还有哪些情形呢?
请举例说明。
根据学生的回答,归纳为以下三种:
(板书2)(+)+(-);
(-)+(-);
(0)+(-)
2、师:
如何进行有理数的加法呢?
我们先看下面这个问题:
(出示PPT5)一间0℃冷藏室连续两次改变温度:
(1)第一次上升5℃,接着再上升3℃;
(2)第一次下降5℃,接着再下降3℃;
(3)第一次下降5℃,接着再上升3℃;
(4)第一次下降3℃,接着再上升5℃。
每一种情形下,两次变化使温度共上升多少摄氏度?
(这里要结合前面有理数的学习,引导学生注意两次变化的结果“共”与“上升”等词语的含义,其中“共”表示求和,最终温度的升、降要通过和的正、负来体现,从而问题是求两个有理数的和。
)
3、师:
我们规定,温度上升记作正,温度下降记作负,请同学们在数轴上表示连续两次温度的变化结果,写出算式。
(引导学生将温度的变化过程在数轴上表示出来,观察得出变化结果,进而列出加法算式)
4、(
出示PPT6)师:
第一个算式是小学已学习过的,第二个算的两个加数都是负数,你能说说看是怎样计算的吗?
(引导学生从和的符号以及和的绝对值两个方面分别说明自己的算法)
待学生说明自己的算法理由后,可得出:
1.同号两数相加,取与加数相同的符号,并把绝对值相加。
(板书3)
(出示PPT7)师:
第三和第四个算式是负数与正数相加,也可称为异号两数相加,你又是怎样计算的?
2.异号两数相加,取绝对值较大的加数的符号,并用较大
的绝对值减去较小的绝对值。
(板书4)
学生讨论,相互补充。
学生思考、回答问题。
学生模仿已有的算式填表。
学生阐述自己计算的方法。
向学生渗透分类思想,体现数学的简洁美!
从学生的生活经验出发,从学生已有的认知出发,将对新知的探索设置在学生的最近发展区,能有效激发学生兴趣.
利用数轴直观演示,数形结合,让学生参与探索的过程,直观感受有理数的加法法则。
渗透由特殊到一般的辩证唯物主义思想;
鼓励学生用自己的语言描述法则,提高学生的概括能力和语言表达能力
(三)应用新知
同学们现在会计算这堂课刚开始时我们列出的算式了吗?
哪两只队伍能进入十六强呢?
(展示PPT8)
现在请同学们两人为一组,互相出题考察对方,看谁出的题型多,看谁算得又快又好。
(要求学生说明算理,记录学生互相出的题目与答案,针
对学生回答进行讲评,适时鼓励)
学生解题。
学生之间互相出题,利用法则计算。
旨在调动学生的学习热情,以竞赛的形式激发学生的学习热情,同时巩固已学习是的法则。
(四)探索新知
1、(出示PPT9)探究二(如学生在互相出题时已有类似算式,则因势引入)
以下算式你会计算吗?
你能仿照探究一中“温度的变化”说明各式的实际意义吗?
(-5)+(+5)=————,(-5)+0=————。
由计算结果你能得出什么结论?
(学生回答,教师板书5)异号两数相加,绝对值相等时和为0(即互为相反数两数之和为0)。
(可接在2的后面写,见板书设计!
(让学生观察结论2是否有需要完善的地方,待学生回答后教师在板书的基础上添加“当绝对值不等时”)
3.一个数与零相加,仍得这个数。
以上三条结论就构成了有理数的加法法则:
(板书已有,只需再带领学生复习一下即可!
1.同号两数相加,取与加数相同的符号,并把绝对值相加;
2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
绝对值相等时和为0(即互为相反数两数之和为0)。
学生观察、思考、讨论。
学生观察、思考、讨论,用自己的语言描述加法法则。
仿照探究一的模式解决问题
完善有理数加法法则。
(五)例题讲解,巩固新知
(出示PPT10)例1.计算:
(1)(+7)+(+6);
(2)(-5)+(-7);
(3)(
)+
;
(4)(-10.5)+(+21.5);
(5)(-7.5)+(+7.5);
(6)(-3.5)+0。
学生逐题解答,教师选择两题板书演示解题步骤。
(板书6)解:
(2)原式=-(9+5)=-14
(3)原式=-(
-
)=-
教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,再根据两个加数符号的具体情况,选用相应的加法法则,确定和的符号以及和的绝对值。
学生观察教师的解题步骤,并按规范解题。
培养学生解题的规范性。
(六)巩固练习
(出示PPT11)练习1.比比谁的眼睛亮:
下列各计算结果是对还是错?
如果错误请指出错在哪里,并改正错误。
(1)(-4)+2=-6
(
)
(2)(-15)+16=1
(3)(-6)+(-1)=-5
(4)(-34)+(-27)=51
(5)(-9)+0=0
(6)(+60)+(-60)=120
(7)(-27)+36=-9
(出示PPT12)练习2.计算
(1)(+3.5)+(+4.5);
(2)(
)+(
);
(4)(
(5)100+(-100);
(6)(-9.5)+0
学生完成练习,同伴之间相互订正,教师对学生的板演进行评价。
学生集体口答。
学生做练习,两位学生板演
(2)、(4)两题,全班同学口答其余四题。
采用示错式教学,展示学生在运算中容易出现的错误,减少学生解题时出错。
通过练习让学生熟练运用有理数加法法则。
(七)拓展练习
(出示PPT13)练习3.下面的说法是否正确?
如果不正确,请举例说明。
(若课堂时间不够,可作为课后思考题)
(1)两个数的和一定比两个数中任何一个都大;
(2)两个数的和是正数,这两个数一定是正数。
要求学生不仅能指出说法的正误,并能举出实例证明自己的结论。
学生思考判断并举反例说明。
开放性的题目让学生在探索的过程中进一步理解法则,体会有理数的加法与小学时加法的区别。
(八)归纳小结
通过本节课的学习,你学到了哪些数学知识?
(出示PPT14)有理数的加法法则:
2.异号两数相加,当绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
学生回答。
使学生对所学的知识有一个总体而深刻的认识。
(九)布置作业
1.习题1.4:
1(必做题)(出示PPT15)
2.你能将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图幻方的9个空格中,使得处于同一横行,同一竖列,同一斜对角线上的3个数相加都得0吗?
(选做题)
学生回家完成。
作业分层布置,照顾到全体学生;
第二题是九宫格问题,数的范围扩大到有理数范围后就有一定的难度,激发学生挑战的意识。
(十)板书设计
(板书1) §
1.4 有理数的加减
一、有理数的加法(板书3、4、5)
同号两数相加,取原来的符号,并把绝对值相加。
绝对值相等时和为0(即互为相反数之和为0)。
(板书6)例1.
解:
(2)原式=-(9+5) =-14
)
=
(板书2:
用后可擦)
(+)+(-);
《大数的认识》
第一课时教学过程设计
课题
亿以内数的认识(例1)
课型
新授
教
学
目
标
知识与技能:
1、使学生知道生活中有比万大的数。
2、使学生进一步认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位。
过程与方法:
使学生经历揭示各计数单位间的关系的过程,掌握数位顺序表,理解位值的概念
情感、态度和价值观:
体会大数在生活中的广泛应用,培养学生在实际生活中寻找数学信息的意识和能力。
重点
认识计数单位“万、十万、百万、千万和亿”。
难点
掌握每相邻两个计数单位之间的关系。
教具
图片和计数器。
教学过程
一、复习导入:
1、我们以前都认识过哪些数?
2、数数:
1)从689一个一个的数到712。
2)从420一十一十的数到540。
3)从910一十一十的数到1000。
4)从200一十一十的数到1000。
3、在生活中你见到过哪些比较大的数?
4、出示图片:
在日常生活和生产中,我们经常用到比万大的数。
北京市人口:
13819000人。
请学生试着读一读。
这节课我们就来研究更大的数,板书课题:
亿以内数的认识。
二、探究新知
1、请学生拿出计数器,一千一千地数,当数到10个一千时问:
一千一千地数,10个一千是多少?
强调:
千位上的10个珠子怎么办?
2、请学生10个10个地数,当数到10个一万时问:
是多少
利用计数器问:
怎么表示10个一万?
3、照这样继续数下去
10个十万是多少?
10个一百万是多少?
10个一千万是多少?
学生在计数器上数数。
学生自由谈。
以组为单位按要求数数。
学生自由汇报,课前收集的数。
观察图片,试着读数。
10个一千是一万。
拨回去,在万位上拨一个珠子。
10个一万是十万。
在十万位上拨1个珠子。
同桌互相数数
10个十万是一百万
10个一百万是一千万
10个一千万是一亿
全班交流。
复习所学的数的知识,为学习新知做准备。
感受到大数在生活中的应用,产生认识大数的需要,激发学生探究新知的欲望。
使学生进一步认识计数单位“万、十万、百万、千万和亿”,掌握每相邻两个计数单位之间的关系。
一、十、百、千、万、十万、百万、千万都是计数单位。
想一想:
每相邻两个计数单位之间是什么关系?
4、把所学数位按数位顺序表排列起来
亿级万级个级
亿千百十万千百十个
万万万
位位位位位位位位位
13819000
↑
表示8个十万。
每个计数单位都要占一个位置,按照我国计数的习惯,每4个数位是一级。
说一说其他数位上的数各表示多少?
三、巩固新知
做一做的1题数数。
做一做的2题说一说生活中哪些地方用到万以上的数。
3、练习一的第1题。
四、小结
通过这节课的学习,你有什么收获和体会?
五、作业:
做一个数位顺序表。
每相邻两个计数单位之间是十进关系。
数级说出数位顺序表
数位。
学生说出数位上的数表示什么。
学生两人一组,按要求数数,互相检查。
学生举例说明。
知道数级、数位。
掌握数位顺序表,理解位值的概念。
理解位值的概念。
通过数数,理解并掌握计数规律。
板书设计
亿以内数的认识