糖代谢Word格式.docx

上传人:b****7 文档编号:22218586 上传时间:2023-02-03 格式:DOCX 页数:17 大小:27.74KB
下载 相关 举报
糖代谢Word格式.docx_第1页
第1页 / 共17页
糖代谢Word格式.docx_第2页
第2页 / 共17页
糖代谢Word格式.docx_第3页
第3页 / 共17页
糖代谢Word格式.docx_第4页
第4页 / 共17页
糖代谢Word格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

糖代谢Word格式.docx

《糖代谢Word格式.docx》由会员分享,可在线阅读,更多相关《糖代谢Word格式.docx(17页珍藏版)》请在冰豆网上搜索。

糖代谢Word格式.docx

其膜上有专一受体。

红细胞受体可转运多种D-糖,葡萄糖的Km最小,L型不转运。

此受体是蛋白质,其转运速度决定肌肉和脂肪组织利用葡萄糖的速度。

心肌缺氧和肌肉做工时转运加速,胰岛素也可促进转运,可能是通过改变膜结构。

第二节糖酵解

一、定义

1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。

它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。

有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。

缺氧时NADH把丙酮酸还原生成乳酸。

2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。

根据产物不同,可分为乙醇发酵、乳酸发酵。

二、途径

共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;

后5步是放能阶段,三碳糖生成丙酮酸,共产生4分子ATP。

总过程需10种酶,都在细胞质中,多数需要Mg2+。

酵解过程中所有的中间物都是磷酸化的,可防止从细胞膜漏出、保存能量,并有利于与酶结合。

1.磷酸化葡萄糖被ATP磷酸化,产生6-磷酸葡萄糖。

反应放能,在生理条件下不可逆(K大于300)。

由己糖激酶或葡萄糖激酶催化,需要Mg2+或Mn2+。

己糖激酶可作用于D-葡萄糖、果糖和甘露糖,是糖酵解过程中的第一个调节酶,受6-磷酸葡萄糖的别构抑制。

有三种同工酶。

葡萄糖激酶存在于肝脏中,只作用于葡萄糖,不受6-磷酸葡萄糖的别构抑制。

肌肉的己糖激酶Km=0.1mM,肝脏的葡萄糖激酶Km=10mM,平时细胞中的葡萄糖浓度为5mM,只有进入后葡萄糖激酶才活跃,合成糖原,降低血糖浓度。

葡萄糖激酶是诱导酶,胰岛素可诱导它的合成。

6-磷酸葡萄糖也可由糖原形成,由糖原磷酸化酶催化,生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶的催化下生成6-磷酸葡萄糖。

此途径少消耗1个ATP。

6-磷酸葡萄糖由葡萄糖6-磷酸酶催化水解,此酶存在于肝脏和肾脏中,肌肉中没有。

2.异构由6-磷酸葡萄糖生成6-磷酸果糖

反应中间物是酶结合的烯醇化合物,反应是可逆的,由浓度控制。

由磷酸葡萄糖异构酶催化,受磷酸戊糖支路的中间物竞争抑制,如6-磷酸葡萄糖酸。

戊糖支路通过这种方式抑制酵解和有氧氧化,pH降低使抑制加强,减少酵解,以免组织过酸。

3.磷酸化6-磷酸果糖被ATP磷酸化,生成1,6-二磷酸果糖

由磷酸果糖激酶催化,是酵解的限速步骤。

是别构酶,四聚体,调节物很多,ATP、柠檬酸、磷酸肌酸、脂肪酸、DPG是负调节物;

果糖1,6-二磷酸、AMP、ADP、磷酸、环AMP等是正调节物。

PFK有三种同工酶,A在心肌和骨骼肌中,对磷酸肌酸、柠檬酸和磷酸敏感;

B在肝和红细胞中,对DPG敏感;

C在脑中,对ATP和磷酸敏感。

各种效应物在不同组织中浓度不同,更重要的是其浓度变化幅度不同,如大鼠在运动和休息时ATP含量仅差0.8ug/g肌肉,不能改变PFK活力,而磷酸肌酸浓度变化大,效应也大。

4.裂解生成3-磷酸甘油醛和磷酸二羟丙酮

由醛缩酶催化,有三种同工酶,A在肌肉中,B在肝中,C在脑中。

平衡有利于逆反应,由浓度推动反应进行。

生成西弗碱中间物。

5.异构DHAP生成磷酸甘油醛

DHAP要转变成磷酸甘油醛才能继续氧化,此反应由磷酸丙糖异构酶催化,平衡时磷酸甘油醛占10%,由于磷酸甘油醛不断消耗而进行。

受磷酸和磷酸缩水甘油竞争抑制。

以上反应共消耗2分子ATP,产生2分子3-磷酸甘油醛,原来葡萄糖的3,2,1位和4,5,6位变成1,2,3位。

6.氧化G-3-P+NAD++H3PO4=1,3-DPG+NADH+H+

由磷酸甘油醛脱氢酶催化,产物是混合酸酐,含高能键(11.8千卡)。

反应可分为两部分,放能的氧化反应偶联推动吸能的磷酸化反应。

酶是四聚体,含巯基,被碘乙酸强烈抑制。

砷酸盐与磷酸竞争,可产生3-磷酸甘油酸,但没有磷酸化,是解偶联剂。

NAD之间有负协同效应,ATP和磷酸肌酸是非竞争抑制剂,磷酸可促进酶活。

肌肉收缩开始的几秒,磷酸肌酸从20mM下降到10-5mM,使酶活升高;

随着乳酸的积累,ATP抑制增强,酶活下降。

7.放能1,3-DPG+ADP=3-磷酸甘油酸+ATP

由磷酸甘油酸激酶催化,需Mg。

是底物水平磷酸化,抵消了消耗的ATP。

8.变位3-磷酸甘油酸变成2-磷酸甘油酸

由磷酸甘油酸变位酶催化,需镁离子。

DPG是辅因子,可由1,3-二磷酸甘油酸变位而来。

机理是DPG的3位磷酸转移到底物的2位。

DPG无高能键,可被磷酸酶水解成3-磷酸甘油酸。

红细胞中有15-50%的1,3-DPG转化为DPG,以调节运氧能力。

在氧分压较高的肺泡,亲和力不变,而在组织中亲和力降低,可增加氧的释放。

9.脱水生成磷酸烯醇式丙酮酸PEP

由烯醇酶催化,需镁或锰离子。

反应可逆,分子内能量重新分布,产生一个高能键。

F—可络合镁离子,抑制酶活,有磷酸盐时更强,可用来抑制酵解。

10.放能生成丙酮酸和ATP

由丙酮酸激酶催化,需镁离子,不可逆。

是别构酶,F-1,6-2P活化,脂肪酸、乙酰辅酶A、ATP和丙氨酸抑制酶活。

有三种同工酶,L型存在于肝脏中,被二磷酸果糖激活,脂肪酸、乙酰辅酶A、ATP和丙氨酸抑制;

A型存在于脂肪、肾和红细胞,被二磷酸果糖激活,ATP和丙氨酸抑制;

M型存在于肌肉中,被磷酸肌酸抑制。

丙酮酸激酶受激素影响,胰岛素可增加其合成。

三、能量变化

C6H12O6+2Pi+2ADP+2NAD+=2C3H4O3+2ATP+2NADH+2H++2H2O

有氧时2个NADH经呼吸链可产生6个ATP,共产生8个ATP;

无氧时生成乳酸,只有2个ATP。

在神经组织、骨骼肌和脑组织中,NADH进入线粒体要经过甘油磷酸穿梭系统,在细胞质中由3-磷酸甘油脱氢酶催化,将磷酸二羟丙酮还原生成3-磷酸甘油,进入线粒体后再氧化生成磷酸二羟丙酮,返回细胞质。

因为其辅酶是FAD,所以生成FADH2,只产生2个ATP。

这样其还原当量(2H++2e)被带入线粒体,生成FADH2,进入呼吸链,结果共生成6个ATP。

其他组织如肝脏和心肌等,通过苹果酸穿梭系统,在苹果酸脱氢酶作用下还原草酰乙酸,生成苹果酸,进入线粒体后再氧化生成草酰乙酸。

不过草酰乙酸不能通过线粒体膜,必需经谷草转氨酶催化生成天冬氨酸和α-酮戊二酸才能返回细胞质。

线粒体中苹果酸脱氢酶的辅酶是NAD,所以可生成3个ATP。

第三节 

三羧酸循环

一、 

 

丙酮酸脱氢酶复合体

(一)反应过程:

5步,第一步不可逆。

1. 

脱羧,生成羟乙基TPP,由E1催化。

2. 

羟乙基被氧化成乙酰基,转移给硫辛酰胺。

由E2催化。

3. 

形成乙酰辅酶A。

4. 

氧化硫辛酸,生成FADH2。

由E3催化。

5. 

氧化FADH2,生成NADH。

复合体有60条肽链组成,直径30nm,E1和E2各24个,E3有12个。

其中硫辛酰胺构成转动长臂,在电荷的推动下携带中间产物移动。

(二)活性调控

此反应处于代谢途径的分支点,收到严密调控:

产物抑制:

乙酰辅酶A抑制E2,NADH抑制E3。

可被辅酶A和NAD+逆转。

核苷酸反馈调节:

E1受GTP抑制,被AMP活化。

共价调节:

E1上的特殊丝氨酸被磷酸化时无活性,水解后恢复活性。

丙酮酸抑制磷酸化作用,钙和胰岛素增加去磷酸化作用,ATP、乙酰辅酶A、NADH增加磷酸化作用。

二、三羧酸循环的途径

8步。

曾经怀疑第一个组分是其他三羧酸,故名三羧酸循环。

也叫Krebs循环。

辅酶A与草酰乙酸缩合,生成柠檬酸

由柠檬酸缩合酶催化,高能硫酯键水解推动反应进行。

受ATP、NADH、琥珀酰辅酶A和长链脂肪酰辅酶A抑制。

ATP可增加对乙酰辅酶A的Km。

氟乙酰辅酶A可形成氟柠檬酸,抑制下一步反应的酶,称为致死合成,可用于杀虫剂。

柠檬酸异构化,生成异柠檬酸

由顺乌头酸酶催化,先脱水,再加水。

是含铁的非铁卟啉蛋白。

需铁及巯基化合物(谷胱甘肽或Cys等)维持其活性。

氧化脱羧,生成α-酮戊二酸

第一次氧化,由异柠檬酸脱氢酶催化,生成NADH或NADPH。

中间物是草酰琥珀酸。

是第二个调节酶,能量高时抑制。

生理条件下不可逆,是限速步骤。

细胞质中有另一种异柠檬酸脱氢酶,需NADPH,不是别构酶。

其反应可逆,与NADPH还原当量有关。

氧化脱羧,生成琥珀酰辅酶A

第二次氧化脱羧,由α-酮戊二酸脱氢酶体系催化,生成NADH。

其中E1为α-酮戊二酸脱氢酶,E2为琥珀酰转移酶,E3与丙酮酸脱氢酶体系相同。

机制类似,但无共价调节。

分解,生成琥珀酸和GTP

是唯一一个底物水平磷酸化,由琥珀酰辅酶A合成酶(琥珀酰硫激酶)催化。

GTP可用于蛋白质合成,也可生成ATP。

需镁离子。

6. 

脱氢,生成延胡索酸

第三步氧化还原反应,由琥珀酸脱氢酶催化,生成FADH2。

琥珀酸脱氢酶位于线粒体内膜,直接与呼吸链相连。

FADH2不与酶解离,电子直接转移到酶的铁原子上。

7. 

水化,生成苹果酸

由延胡索酸酶催化,是反式加成,只形成L-苹果酸。

8. 

脱氢,生成草酰乙酸

第四次氧化还原,由L-苹果酸脱氢酶催化,生成NADH。

反应在能量上不利,由于草酰乙酸的消耗而进行。

三、 

总结

能量情况:

每个循环产生3个NADH,1个FADH2,1个GTP,共12个ATP。

加上酵解和丙酮酸脱氢,每个葡萄糖有氧氧化共产生36-38个ATP。

不对称反应:

四、 

回补反应

三羧酸循环的中间物是许多生物合成的前体,如草酰乙酸和α-酮戊二酸可用于合成天冬氨酸和谷氨酸,卟啉的碳原子来自琥珀酰辅酶A。

这样会降低草酰乙酸浓度,抑制三羧酸循环。

所以必需补充草酰乙酸。

丙酮酸羧化:

与ATP、水和CO2在丙酮酸羧化酶作用下生成草酰乙酸。

需要镁离子和生物素。

是调节酶,平时活性低,乙酰辅酶A可促进其活性。

PEP+CO2+GDP=草酰乙酸+GTP 

由磷酸烯醇式丙酮酸羧化激酶催化,需Mn2+,在脑和心脏中有这个反应。

由天冬氨酸转氨生成草酰乙酸,谷氨酸生成α-酮戊二酸,异亮氨酸、缬氨酸、苏氨酸和甲硫氨酸生成琥珀酰辅酶A。

五、 

乙醛酸循环

许多植物和微生物可将脂肪转化为糖,是通过一个类似三羧酸循环的乙醛酸循环,将2个乙酰辅酶A合成一个琥珀酸。

此循环生成异柠檬酸后经异柠檬酸裂解酶催化,生成琥珀酸和乙醛酸,乙醛酸与另一个乙酰辅酶A缩合产生苹果酸,由苹果酸合成酶催化。

然后与三羧酸循环相同。

第四节磷酸戊糖途径

一、在细胞质中进行

(一)产生NADP,为生物合成提供还原力,如脂肪酸、固醇等。

NADPH还可使谷胱甘肽维持还原态,维持红细胞还原性。

(二)产生磷酸戊糖,参加核酸代谢

(三)是植物光合作用中从CO2合成葡萄糖的部分途径

(一)氧化阶段:

生成5-磷酸核酮糖,并产生NADPH

1.葡萄糖-6-磷酸在葡萄糖-6-磷酸脱氢酶作用下生成6-磷酸葡萄糖酸内酯,并产生NADPH。

是此途径的调控酶,催化不可逆反应,受NADPH反馈抑制。

2.被6-磷酸葡萄糖酸δ内酯酶水解,生成6-磷酸葡萄糖酸。

3.在6-磷酸葡萄糖酸脱氢酶作用下脱氢、脱羧,生成5-磷酸核酮糖,并产生NADPH。

(二)分子重排,产生6-磷酸果糖和3-磷酸甘油醛

1.异构化,由磷酸戊糖异构酶催化为5-磷酸核糖,由磷酸戊糖差向酶催化为5-磷酸木酮糖。

2.转酮反应。

5-磷酸木酮糖和5-磷酸核糖在转酮酶催化下生成3-磷酸甘油醛和7-磷酸景天庚酮糖。

此酶也叫转酮醇酶,需TPP和镁离子,生成羟乙醛基TPP负离子中间物。

3.转醛反应。

7-景天庚酮糖与3-磷酸甘油醛在转醛酶催化下生成4-磷酸赤藓糖和6-磷酸果糖,反应中酶分子的赖氨酸氨基与酮糖底物生成西弗碱中间物。

4.转酮反应。

4-磷酸赤藓糖与5-磷酸木酮糖在转酮酶催化下生成6-磷酸果糖和3-磷酸甘油醛。

5.总反应为:

3核糖-5-磷酸=2果糖-6-磷酸+甘油醛-3-磷酸

如细胞中磷酸核糖过多,可以逆转反应,进入酵解。

第五节糖醛酸途径

一、意义

(一)解毒:

肝脏中的糖醛酸有解毒作用,可与含羟基、巯基、羧基、氨基等基团的异物或药物结合,生成水溶性加成物,使其溶于水而排出。

(二)生物合成:

UDP-糖醛酸可用于合成粘多糖,如肝素、透明质酸、硫酸软骨素等。

(三)合成维生素C,但灵长类不能。

(四)形成木酮糖,可与磷酸戊糖途径相连。

二、过程

(一)6-磷酸葡萄糖转化为UDP-葡萄糖,再由NAD连接的脱氢酶催化,形成UDP-葡萄糖醛酸。

(二)合成维生素C:

UDP-葡萄糖醛酸经水解、还原、脱水,形成L-古洛糖酸内酯,再经L-古洛糖酸内酯氧化酶氧化成抗坏血酸。

灵长类动物、豚鼠、印度果蝙蝠不能合成。

(三)通过C5差向酶,形成UDP-艾杜糖醛酸。

(四)L-古洛糖酸脱氢,再脱羧,生成L-木酮糖,然后与NADPH加氢生成木糖醇,还原NAD+生成木酮糖,与磷酸戊糖途径相连。

 

第六节糖的异生

 一、意义

(一)将非糖物质转变为糖,以维持血糖恒定,满足组织对葡萄糖的需要。

人体可供利用的糖仅150克,而且储量最大的肌糖原只供本身消耗,肝糖原不到12小时即全部耗尽,这时必需通过异生补充血糖,以满足脑和红细胞等对葡萄糖的需要。

(二)将肌肉酵解产生的乳酸合成葡萄糖,供肌肉重新利用,即乳酸循环。

二、途径 

基本是酵解的逆转,但有三步不同:

(一)由丙酮酸生成磷酸烯醇式丙酮酸

1.丙酮酸在丙酮酸羧化酶作用下生成草酰乙酸

此酶存在于肝和肾脏的线粒体中,需生物素和镁离子。

镁离子与ATP结合,提供能量,生成羧基生物素,再转给丙酮酸,形成草酰乙酸。

此酶是别构酶,受乙酰辅酶A调控,缺乏乙酰辅酶A时无活性。

ATP含量高可促进羧化。

此反应联系三羧酸循环和糖异生,乙酰辅酶A可促进草酰乙酸合成,如ATP含量高则三羧酸循环被抑制,异生加快。

2.草酰乙酸过膜:

异生在细胞质中进行,草酰乙酸要转化为苹果酸才能出线粒体膜,在细胞质中再氧化成草酰乙酸。

这是由苹果酸脱氢酶催化的,同时带出一个NADH。

因为线粒体中还原辅酶多,NAD+/NADH在细胞质中是500-700,线粒体中是5-8。

3.磷酸烯醇式丙酮酸羧化激酶催化草酰乙酸生成PEP。

反应需GTP提供磷酰基,速度受草酰乙酸浓度和激素调节。

胰高血糖素、肾上腺素、糖皮质激素可增加肝脏中的酶量,胰岛素相反。

总反应为:

丙酮酸+ATP+GTP+H2O=PEP+ADP+GDP+Pi+H+

反应消耗2个高能键,比酵解更易进行。

(二)果糖二磷酸酶催化果糖-1,6-二磷酸水解为果糖-6-磷酸。

是别构酶,AMP强烈抑制酶活,平时抑制酶活50%。

果糖2,6-二磷酸也抑制,ATP、柠檬酸和3-磷酸甘油酸可激活。

(三)6-磷酸葡萄糖水解,生成葡萄糖。

由葡萄糖-6-磷酸酶催化,需镁离子。

此酶存在于肝脏,脑和肌肉没有。

2丙酮酸+4ATP+2GTP+2NADH+2H++4H2O=葡萄糖+NAD++4ADP+2GDP+6Pi

三、糖异生的前体

(一)三羧酸循环的中间物,如柠檬酸、琥珀酸、苹果酸等。

(二)大多数氨基酸是生糖氨基酸,如丙氨酸、丝氨酸、半胱氨酸等,可转变为三羧酸循环的中间物,参加异生。

(三)肌肉产生的乳酸,可通过乳酸循环(Cori循环)生成葡萄糖。

反刍动物胃中的细菌将纤维素分解为乙酸、丙酸、丁酸等,奇数碳脂肪酸可转变为琥珀酰辅酶A,参加异生。

第七节糖原的合成与分解

 一、分解代谢

(一)糖原磷酸化酶从非还原端水解α-1,4糖苷键,生成1-磷酸葡萄糖。

到分支点前4个残基停止,生成极限糊精。

可分解40%。

有a,b两种形式,b为二聚体,磷酸化后生成有活性的a型四聚体。

b也有一定活性,受AMP显著激活。

(二)去分支酶:

有两个活性中心,一个是转移酶,将3个残基转移到另一条链,留下以α-1,6键相连的分支点。

另一个活性中心起脱支酶作用,水解分支点残基,生成游离葡萄糖。

(三)磷酸葡萄糖变位酶:

催化1-磷酸葡萄糖生成6-磷酸葡萄糖,经1,6-二磷酸葡萄糖中间物。

(四)肝脏、肾脏、小肠有葡萄糖6-磷酸酶,可水解生成葡萄糖,补充血糖。

肌肉和脑没有,只能氧化供能。

二、合成

(一)在UDP-葡萄糖焦磷酸化酶作用下,1-磷酸葡萄糖生成UDP-葡萄糖,消耗一个UTP,生成焦磷酸。

(二)糖原合成酶将UDP-葡萄糖的糖基加在糖原引物的非还原端葡萄糖的C4羟基上。

引物至少要有4个糖基,由引发蛋白和糖原起始合成酶合成,将UDP-葡萄糖加在引发蛋白的酪氨酸羟基上。

糖原合成酶a磷酸化后活性降低,称为b,其活性依赖别构效应物6-磷酸葡萄糖激活。

(三)分支酶合成支链。

从至少11个残基的链上将非还原端7个残基转移到较内部的位置,形成1,6键分支。

新的分支必需与原有糖链有4个残基的距离。

分支可加快代谢速度,增加溶解度。

三、衍生糖的合成

(一)GDP-岩藻糖

Glc→Glc-6-P→Fru-6-P→Man-6-P→Man-1-P→GDP-Man→GDP-岩藻糖

(二)UDP-葡萄糖胺

Fru-6-P→葡萄糖胺-6-P→NacG-6-P→NAcG-1-P→UDP-NacG

(三)CMP-唾液酸

UDP-NAcG→N-乙酰神经氨酸-9-磷酸→N-乙酰神经氨酸(唾液酸)→CMP-唾液酸

  

第八节糖代谢的调节 

一、酵解的调节

三个酶。

通过能量与生物合成的原料调节。

(一)磷酸果糖激酶是限速酶。

其调节物有:

1.ATP是底物,也是负调节物,可被AMP逆转。

当细胞中能荷(ATP/AMP)高时,酶对6-磷酸果糖的亲和力降低。

2.柠檬酸是三羧酸循环的第一个产物,其浓度增加表示生物合成的前体过剩,可加强ATP的抑制作用。

3.氢离子也有抑制作用,可防止乳酸过多引起血液酸中毒。

4.2,6-二磷酸果糖是别构活化剂,可增加对底物的亲和力。

由磷酸果糖激酶2合成,在果糖二磷酸酶催化下水解成6-磷酸果糖。

这两个酶称为前后酶或双功能酶,组成相同,其丝氨酸磷酸化后起磷酸酶作用,去磷酸则起激酶作用。

(二)己糖激酶控制酵解的入口,因为6-磷酸葡萄糖的用处较多,参加磷酸戊糖途径、糖醛酸途径和糖原合成等,所以不是关键酶,由产物反馈抑制,磷酸果糖激酶活性降低则6-磷酸葡萄糖积累,抑制己糖激酶活性。

(三)丙酮酸激酶控制出口。

1.1,6-二磷酸果糖起活化作用,与磷酸果糖激酶协调,加速酵解。

2.丙酮酸转氨生成丙氨酸,别构抑制,表示生物合成过剩。

3.其三种同工酶调节不同,肝脏的L型同工酶受ATP别构抑制,且有可逆磷酸化。

血糖低时被级联放大系统磷酸化,降低活性,而肌肉中的M型不受磷酸化调节,血糖低时也可酵解供能。

A型介于两者之间。

二、三羧酸循环的调控

由三个酶调控:

柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶。

第一步是限速步骤,受底物浓度影响和ATP的抑制。

ATP还抑制异柠檬酸脱氢酶,ADP起激活作用。

NADH对三种酶都抑制。

琥珀酰辅酶A与乙酰辅酶A竞争,抑制柠檬酸合成酶和α-酮戊二酸脱氢酶。

草酰乙酸浓度低,是影响三羧酸循环速度的重要因素。

三、酵解、三羧酸循环与氧化磷酸化

给高速酵解的细胞氧气,则葡萄糖消耗减少,乳酸堆积终止,称为巴斯德效应。

原因是有氧时丙酮酸氧化,产生大量ATP,抑制酵解和三羧酸循环。

三者都由能荷控制。

四、糖异生和酵解的协调

(一)高浓度的6-磷酸葡萄糖抑制己糖激酶,促进异生。

(二)酵解和异生的控制点是6-磷酸果糖与1,6-二磷酸果糖的转化。

ATP和柠檬酸促进异生,抑制酵解。

2,6-二磷酸果糖相反,是重要调节物。

(三)丙酮酸与磷酸烯醇式丙酮酸的转化,丙酮酸羧化酶受乙酰辅酶A激活,ADP抑制;

丙酮酸激酶被ATP、NADH和丙氨酸抑制。

(四)无效循环:

由不同酶催化的两个相反代谢反应条件不同,一个需要ATP参加,另一个进行水解,结果只是消耗能量,反应物不变,称为无效循环。

可用于产热。

五、糖原代谢的调节

其分解与合成主要由糖原磷酸化酶和糖原合成酶控制。

二者都受可逆磷酸化调节,效果相反。

激素通过cAMP促进磷酸化作用,使磷酸化酶成为a型(有活性),合成酶变成b型(无活性)。

合成酶由蛋白激酶磷酸化。

六、神经和激素对血糖的调节

血糖浓度一般在80-120mg/100ml,称为葡萄糖耐量。

肾糖阈为160-180,血糖过多则从尿排出。

血糖低于70或过度兴奋可刺激延脑第四脑室“糖中枢”,引起肝糖原分解。

下丘脑可分泌皮质释放因子,作用于肾上腺皮质,升高血糖。

影响糖代谢的激素有:

1.胰岛素:

由胰岛β细胞分泌,促进糖原合成酶活性,诱导葡萄糖激酶合成,加强磷酸果糖激酶作用。

低血糖效应。

2.肾上腺素和胰高血糖素:

通过cAMP激活糖原磷酸

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1