常见风机故障原因及处理方法Word格式文档下载.docx
《常见风机故障原因及处理方法Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《常见风机故障原因及处理方法Word格式文档下载.docx(19页珍藏版)》请在冰豆网上搜索。
在实际工作中,用三点法找动平衡较为简单方便。
试加重量的计算公式为
P<=250×
A0×
G/D(3000/n)2(g)
为了尽快找到应加的重量和位置,应根据平时的数据多总结经验。
根据经验,Y4-73-11-22D的风机振动0.10mm时不平衡重量为2000
g;
M5-29-11-18D的排粉机振动0.10mm时不平衡重量120g;
轴流ASN2125/1250型引风机振动为0.10mm时不平衡重量只有80
g左右。
为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以维持良好的工作环境。
1.3 空预器的腐蚀导致风机振动间断性超标
这种情况通常发生在燃油锅炉上。
燃油锅炉引风机前一般没有电除尘,烟、风道较短,空预器的波纹板和定位板由于低温腐蚀,波纹板腐蚀成小薄钢片,小薄钢片随烟气一起直接打击在风机叶片上,一方面造成风机的受迫振动,另一方面一些小薄钢片镶嵌在叶片上,由于叶片的动不平衡使风机振动。
这种现象是笔者在长期的实际生产中观察到的结果。
处理方法是及时更换腐蚀的波纹板,采用方法防止空预器的低温腐蚀,提高排烟温度和进风温度(一般应高于60℃以避开露点),波纹板也可使用耐腐蚀的考登钢或金属搪瓷。
1.4 风道系统振动导致引风机的振动
烟、风道的振动通常会引起风机的受迫振动。
这是生产中容易出现而又容易忽视的情况。
风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改变,而一般扩散筒的下部只有4个支点,如图2所示,另一边的接头石棉帆布是软接头,这样一来整个扩散筒的60%重量是悬吊受力。
从图中可以看出轴承座的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。
针对这种状况,在扩散筒出口端下面增加一个活支点(如图3),可升可降可移动。
当机组负荷变化时,只需微调该支点,即可消除振动。
经过现场实践效果非常显著。
该种情况在风道较短的情况下更容易出现。
1.5 动、静部分相碰引起风机振动
在生产实际中引起动、静部分相碰的主要原因:
(1)叶轮和进风口(集流器)不在同一轴线上。
(2)运行时间长后进风口损坏、变形。
(3)叶轮松动使叶轮晃动度大。
(4)轴与轴承松动。
(5)轴承损坏。
(6)主轴弯曲。
根据不同情况采取不同的处理方法。
引起风机振动的原因很多,其它如连轴器中心偏差大、基础或机座刚性不够、原动机振动引起等等,有时是多方面的原因造成的结果。
实际工作中应认真总结经验,多积累数据,掌握设备的状态,摸清设备劣化的规律,出现问题就能有的放矢地采取相应措施解决。
2 轴承温度高
风机轴承温度异常升高的原因有三类:
润滑不良、冷却不够、轴承异常。
离心式风机轴承置于风机外,若是由于轴承疲劳磨损出现脱皮、麻坑、间隙增大引起的温度升高,一般可以通过听轴承声音和测量振动等方法来判断,如是润滑不良、冷却不够的原因则是较容易判断的。
而轴流风机的轴承集中于轴承箱内,置于进气室的下方,当发生轴承温度高时,由于风机在运行,很难判断是轴承有问题还是润滑、冷却的问题。
实际工作中应先从以下几个方面解决问题。
(1)加油是否恰当。
应当按照定期工作的要求给轴承箱加油。
轴承加油后有时也会出现温度高的情况,主要是加油过多。
这时现象为温度持续不断上升,到达某点后(一般在比正常运行温度高10℃~15℃左右)就会维持不变,然后会逐渐下降。
(2)冷却风机小,冷却风量不足。
引风机处的烟温在120℃~140℃,轴承箱如果没有有效的冷却,轴承温度会升高。
比较简单同时又节约厂用电的解决方法是在轮毂侧轴承设置压缩空气冷却。
当温度低时可以不开启压缩空气冷却,温度高时开启压缩空气冷却。
(3)确认不存在上述问题后再检查轴承箱。
3 动叶卡涩
轴流风机动叶调节是通过传动机构带动滑阀改变液压缸两侧油压差实现的。
在轴流风机的运行中,有时会出现动叶调节困难或完全不能调节的现象。
出现这种现象通常会认为是风机调节油系统故障和轮毂内部调节机构损坏等。
但在实际中通常是另外一种原因:
在风机动叶片和轮毂之间有一定的空隙以实现动叶角度的调节,但不完全燃烧造成碳垢或灰尘堵塞空隙造成动叶调节困难。
动叶卡涩的现象在燃油锅炉和采用水膜除尘的锅炉比较普遍,解决的措施主要有
(1)尽量使燃油或煤燃烧充分,减少碳黑,适当提高排烟温度和进风温度,避免烟气中的硫在空预器中的结露。
(2)在叶轮进口设置蒸汽吹扫管道,当风机停机时对叶轮进行清扫,保持叶轮清洁,蒸汽压力<=0.2MPa,温度<=200℃。
(3)适时调整动叶开度,防止叶片长时间在一个开度造成结垢,风机停运后动叶应间断地在0~55°
活动。
(4)经常检查动叶传动机构,适当加润滑油。
4 旋转失速和喘振
旋转失速是气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流造成风机风压下降的现象。
喘振是由于风机处在不稳定的工作区运行出现流量、风压大幅度波动的现象。
这两种不正常工况是不同的,但是它们又有一定的关系。
风机在喘振时一般会产生旋转气流,但旋转失速的发生只决定于叶轮本身结构性能、气流情况等因素,与风烟道系统的容量和形状无关,喘振则风机本身与风烟道都有关系。
旋转失速用失速探针来检测,喘振用U形管取样,两者都是压差信号驱动差压开关报警或跳机。
但在实际运行中有两种原因使差压开关容易出现误动作:
1)烟气中的灰尘堵塞失速探针的测量孔和U形管容易堵塞;
2)现场条件振动大。
该保护的可靠性较差。
由于风机发生旋转失速和喘振时,炉膛风压和风机振动都会发生较大的变化,在风机调试时通过动叶安装角度的改变使风机正常工作点远离风机的不稳定区,随着目前风机设计制造水平的提高,可以将风机跳闸保护中喘振保护取消,改为“发讯”,当出现旋转失速或喘振信号后运行人员通过调节动叶开度使风机脱离旋转脱流区或喘振区而保持风机连续稳定运行,从而减少风机的意外停运。
5 结束语
随着中国风机制造水平的提高,风机的效率和可靠性不断提高,但风机在实际运用中故障的情况仍较多,完善系统设计、做好定期维护工作是提高风机可靠性的关键,总结经验,针对不同的故障采用针对性的方法对减少风机非计划停运也非常重要
风机故障及排除
离心式通风机、轴流式通风机、离心式鼓风机和压缩机的性能故障、机械故障、机械振动、润滑系统故障和轴承故障等产生的原因和消除方法见表4—3~表4-5。
表4-3
性能故障分析和消除方法
序号
故障名称
产生故障的原因
消除方法
1
压力过高,排除流量减小
1.气体成分改变,气体温度过低,或气体所含固体杂质增加,使气体的密度增大。
2.出气管道和阀门被尘土、烟灰和杂物堵塞。
3.进气管道、阀门或网罩被尘土、烟灰和杂物堵塞。
4.出气管道破裂,或其管法兰密封不严密。
5.密封圈磨损过大,叶轮的叶片磨损
1.测定气体密度,消除密度增大的原因
2.开大出气阀门,货进行清扫
3.开大进气阀门,或进行清扫
4.焊接裂口,或更换管法兰垫片
5.更换密封圈、叶片或叶轮
2
压力过低,排出流量过大
1.气体成分改变,气体温度过高,或气体所含固体杂质减少,使气体的密度减小。
2.进气管道破裂,或其管法兰密封不严密。
1.测定气体密度,消除密度减小的原因
2.焊接裂纹,或更换管法兰垫片
3
通风调节系统失灵
1.压力表失灵,阀门失灵或卡住,以致不能根据需要对流量和压力进行调节
2.由于需要流量减少,管道堵塞,流量急剧减小或停止,使风机在不稳定区(飞动区)工作,产生逆流反击风机转子的现象
1.修理或更换压力表,修复阀门
2.如是需要流量减小,应打开旁路阀门,或减低转速,如是管道堵塞应进行清扫
4
风机压力降低
1.管道阻力曲线改变,阻力增大,通风机工作点改变
2.通风机制造不良,或通风机严重磨损
3.通风机转速降低
4.通风机在不稳定区工作
1.调整管道阻力曲线,减小阻力,改变通风机工作点
2.检修通风机
3.提高通风机转速
4.调整通风机工作区
5
噪声大
1.
无隔音设施
2.
管道、调节阀安装松动
加设隔音设施
紧固安装
表4-4
机械故障分析及其消除方法
叶轮损坏或变形
1.叶片表面或订头腐蚀或磨损
2.铆钉和叶片松动
3.叶轮变形后歪斜过大,使叶轮径向跳动或端面跳动过大
1.如是个别损坏,应更换个别零件如损坏过半,应更换叶轮
2.用小冲子紧住,如仍无效,则需要更换螺钉
3.卸下叶轮后,用铁锤校正,或将叶轮平放,压轮盘某侧边缘
机壳过热
在阀门关闭的情况下,风机运转时间过长
停车,待冷却后再开车
密封圈磨损或损坏
1.密封圈与轴套不同轴,在正常运转中被磨损
2.机壳变形,使密封圈一侧磨损
3.转子振动过大,其径向振幅之半大于密封径向间隙
4.密封齿内进入硬质杂物,如金属、焊渣
5.推力轴衬溶化,使密封圈与密封齿接触而磨损
先清除外部影响因素,然后更换密封圈,重新调整和找正密封圈的位置
带滑下或带跳动
1.两带轮位置没有找正,彼此不在同一条中心线上
2.两带轮距离较近或带过长
1.重新找正带轮
2.调整带的松紧度,其方法,或者调整两带轮的间距,或更换适合的带
表4-5机械振动分析及其消除方法
原因
特征
振动的因素分析
转子静不平衡或动不平衡
风机和电动机发生同样一致的振动,振动频率与转速相符合
1.轴与密封圈发生强烈的摩擦,产生局部高热,使轴弯曲
2.叶片质量不对称,或一侧部分叶片被腐蚀或磨损严重
3.叶片附有不均匀的附着物,如铁锈等
4.平衡块质量与位置不对,或位置移动,或检修后未找平衡
5.风机在不平衡区工作,或负荷急剧变化
6.双吸风机的两侧进气量不等
1.更换新轴,并须同时更换密封圈
2.更换坏的叶片,或更换新的叶轮,并找平衡
3.清扫和擦干净叶片上的附着物
4.重找平衡,并将平衡块固定牢固
5.开大闸阀或旁路阀门,进行工况的调节
6.清扫进气管道灰尘,并调整挡板使两侧进气口负压相等
轴安装不良
振动为不定性的,空转时轻,满负荷时大
1.联轴器安装不正,风机轴和电动机轴中心未对正,基础下降
2.带轮安装不正,,两带轮轴不平行
3.减速机轴与风机轴和电动机轴在找正时,未考虑运转时位移的补偿量,或虽考虑但不符合要求
1.进行调整,重新找正
2.进行调整,重新找正
3.进行调整,留出适当的位移补偿余量
转子固定部分松驰,或活动部分间隙过大
发生局部振动现象,主要在轴承箱等活动部分,机体振动不明显,与转数无关,偶有尖锐的破击声或杂音
1.轴衬或轴颈被磨损造成油间隙过大,轴衬与轴承箱之间的紧力过小或有间隙而松动
2.转子的叶轮,联轴器或带轮与轴松动
3.联轴器的螺栓松动,滚动轴承的固定圆螺母松动
1.焊补轴衬合金,调整垫片,或刮研轴承箱中分面
2.修理轴和叶轮,重新配键
3.拧紧螺母
基础或机座的刚度不够或不牢固
产生邻近机房的共振现象,电动机和风机整体振动,而且在各种负荷情形时都一样
1.机房基础的灌浆不良,地脚螺母松动
2.基础或基座的刚度不够,促使转子的不平衡度引起强烈的共振
3.管道未留膨胀余地,与风机连接处的管道没加支持或安装和固定不良
1.查明原因后,施以适当的修补和加固,拧紧螺母,填充间隙
2.进行调整和修理,加装支撑装置
风机内部有摩擦现象
发生振动不规则,且集中在某一部分。
噪声和转数相符合,在启动和停车时,可以听见风机内金属刮碰声
1.叶轮歪斜与机壳内壁相碰,或机壳刚度不够,左右晃动
2.叶轮歪斜与进气口圈相碰
3.推力轴衬歪斜、不平或磨损
4.密封圈与密封齿相碰
1.修理叶轮和推力轴衬
2.修理叶轮和进气口圈
3.
修补推力轴衬
4.
换密封圈,调整密封圈与密封齿间隙
电站风机振动故障简易诊断
摘要:
分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。
关键词:
风机;
振动;
诊断
风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。
而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。
简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。
文中所述振动基于电厂离心式送风机、引风机和排粉机。
1
轴承座振动
1.1
转子质量不平衡引起的振动
在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。
造成转子质量不平衡的原因主要有:
叶轮磨损(主要是叶片)不均匀或腐蚀;
叶片表面有不均匀积灰或附着物(如铁锈);
机翼中空叶片或其他部位空腔粘灰;
主轴局部高温使轴弯曲;
叶轮检修后未找平衡;
叶轮强度不足造成叶轮开裂或局部变形;
叶轮上零件松动或连接件不紧固。
转子不平衡引起的振动的特征:
①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;
②振幅随转数升高而增大;
③振动频率与转速频率相等;
④振动稳定性比较好,对负荷变化不敏感;
⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。
1.2
动静部分之间碰摩引起的振动
如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。
其振动特征:
振动不稳定;
振动是自激振动与转速无关;
摩擦严重时会发生反向涡动;
1.3
滚动轴承异常引起的振动
1.3.1
轴承装配不良的振动
如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。
其振动特征为:
振动值以轴向为最大;
振动频率与旋转频率相等。
1.3.2
滚动轴承表面损坏的振动
滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。
这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。
表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。
1.4
轴承座基础刚度不够引起的振动
基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。
这种振动的特征:
①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;
②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。
1.5
联轴器异常引起的振动
联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。
①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;
②轴心偏差越大,振动越大;
③电机单独运行,振动消失;
④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交。
示例:
某厂M5-29-NO19D型排粉机,转速n=1450r/min,在运行中出现振动,运用普通测振仪测振情况如下:
根据振动情况,振动在承力端的水平方向为最大,垂直及轴向较小,据此判断很可能是叶轮不平衡引起振动,而且振幅随转速的升高而增长很快,转速降低时振幅可趋近于零,再用听针听承力轴承声音正常,用手摸轴承温度正常,检查地脚螺栓完好,轴承和基础原因可排除,联轴器问题也不可能。
检查叶轮发现叶轮磨损严重,系磨损不均匀所至,经进行动平衡试验,在叶轮上加平衡块重450g后振动消除。
2
转子的临界转速引起的振动
当转子的转速逐渐增加并接近风机转子的固有振动频率时,风机就会猛烈地振动起来,转速低于或高于这一转速时,就能平稳地工作。
例如:
①改造后的风机,由于叶轮太重,使风机轴系的临界转速下降到风机工作转速附近,引起共振;
②基础刚度不足,重量不够,其固有频率接近旋转频率;
③风机周围的其他物件、管道、构筑物的共振。
④调节门执行机构传动杆的共振。
该物件共振处的相对振动最大;
振动频率与旋转频率相同或接近。
3
风机风道振动
这种振动是由于风道系统中气流的压力脉动与扰动而引起的。
3.1
风箱涡流脉动造成的振动
入口风箱的结构设计不合理,导致进风箱内的气流产生剧烈的旋涡,并在风机进口集流器中得到加速和扩大,从而激发出较大的脉动压力波。
压力波常常没有规律,振幅随流量增加而增大。
3.2
风道局部涡流引起的振动
风道某些部件(弯头、扩散管段)的设计不合理,造成气流流态不良,在风道中出现局部涡流或气流相互干扰、碰撞而引起气流的压力脉动,从而激发出噪声和风道的振动。
振动无规律性,振幅随负荷的增加而增大。
3.3
风机机壳和风道壁刚度不够引起振动。
刚度较弱的位置,振幅就较大。
3.4
旋转失速
当气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流,造成风机风压下降。
旋转失速主要发生在轴流式风机中,在离心式风机的叶轮及叶片扩压器中,由于流量减少,同样也会出现旋转失速。
旋转失速引起的振动的特征:
(1)振动部位常在风机的进风箱和出口风道;
(2)振动多发生在进口百叶式调节挡板、后弯叶片的风机上;
(3)挡板开度在0~30%时发生强烈振动,开度超过30%时降至正常值;
(4)旋转失速出现时,风机流量、压力产生强烈的脉动。
3.5
喘振
具有驼峰型性能曲线的风机在不稳定区域内工作,而系统中的容量又很大时,则风机的流量、压头和功率会在瞬间内发生很大的周期性的波动,引起剧烈的振动和噪声。
喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,其振幅、频率受风机管道系统容量的支配,其流量、压力、功率的波动又是不稳定工况区造成的。
某厂5、6号送风机(型号为G4-73-11NO25D)进风箱壁一直存在振动较大的现象,5号相对比6号小些,振幅随负荷增加而增大,并且该炉经常缺氧燃烧,送风量不足。
风机初投产时经3600管道从炉顶进风,后来上面管道拆除,改为八米处进风,在原进风圆管道与进风箱连接的方圆节侧壁开孔进风。
由于结构不太合理,进风口开孔尺寸小,并且开孔6号比5号要小很多,流动面积不足。
后来在后侧各开一2500mm×
2000mm的孔,并将6号原开孔尺寸L1及L2加大,以加大进风量,振动减少,锅炉缺氧燃烧解决。
4
结束语
风机的振动问题是很复杂的,但只要掌握各种振动的原因及基本特征,加上平时多积累经验,就能迅速和准确判断风机振动故障的根源所在,进而采取措施,提高风机的安全可靠性。
引风机震动故障的诊断与分析
1 引言
风机与电机之间由联轴器联接,传递运动和转矩。
不对中是风机最常见的故障,风机的故障60%与不对中有关[1]。
风机