质量损失函数.docx

上传人:b****3 文档编号:2183756 上传时间:2022-10-27 格式:DOCX 页数:10 大小:218KB
下载 相关 举报
质量损失函数.docx_第1页
第1页 / 共10页
质量损失函数.docx_第2页
第2页 / 共10页
质量损失函数.docx_第3页
第3页 / 共10页
质量损失函数.docx_第4页
第4页 / 共10页
质量损失函数.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

质量损失函数.docx

《质量损失函数.docx》由会员分享,可在线阅读,更多相关《质量损失函数.docx(10页珍藏版)》请在冰豆网上搜索。

质量损失函数.docx

质量损失函数

质量损失函数

日本质量治理学家田口玄一(Taguchi)以为产品质量与质量损失紧密相关,质量损失是指产品在整个生命周期的进程中,由于质量不知足规定的要求,对生产者、利用者和社会所造成的全数损失之和。

田口用货币单位来对产品质量进行气宇,质量损失越大,产品质量越差;反之,质量损失越小,产品质量越好。

一、质量特性

产品质量特性是产品知足用户要求的属性,包括产品性能、寿命、靠得住性、平安性、经济性、可维修性和环境适应性等。

(与前描述是不是一致)

(一)质量特性分类

田口先生为了论述其原理,对证量特性在一样分类的基础上作了某些调整,分为计量特性和计数特性,如图1所示。

 

图1质量特性的分类

计数特性请查阅有关书籍,那个地址要紧对计量特性进行描述。

一、望目特性。

设目标值为m,质量特性y围绕目标值m波动,希望波动愈小愈好,那么y就被称为望目特性,例如加工某一轴件图纸规定φ10±(mm),加工的轴件的实际直径尺寸y确实是望目特性,其目标值m=10(mm)。

二、望小特性。

不取负值,希望质量特性y愈小愈好,波动愈小愈好,那么y被称为望小特性。

比如测量误差,合金所含的杂质、轴件的不圆度等就属于望小特性。

3、望大特性。

不取负值,希望质量特性y愈大愈好,波动愈小愈好,那么y被称为望大特性。

比如零件的强度、灯泡的寿命等均为望大特性。

(二)质量特性波动

产品在贮存或利用进程中,随着时刻的推移,发生材料老化变质、磨损等现象,引发产品功能的波动,咱们称这种产品由于利用环境,时刻因素,生产条件等阻碍,产品质量特性y偏离目标值m,产生波动。

引发产品质量特性波动的缘故称为干扰源。

要紧有以下三种类型:

一、外干扰(外噪声)

利用条件和环境条件(如温度,湿度,位置,输入电压,磁场,操作者等)的转变引发产品功能的波动,咱们称这种利用条件和环境条件的转变为外干扰,也称为外噪声。

二、内干扰(内噪声)

材料老化现象为内干扰,也称为内噪声。

3、随机干扰(产品间干扰)

在生产制造进程中,由于机械、材料、加工方式、操作者、计测方式和环境(简称5MIE)等生产条件的微小转变,引发产品质量特性的波动,咱们称这种在生产制造进程中显现的功能波动为产品间波动。

以电视机电源电路为例,其输出特性的干扰分类及抗干扰性能如1表所示。

二、质量损失函数

干扰引发了产品功能的波动,有波动就会造成质量损失。

如何气宇由于功能波动所造成的损失,田口先生提出了质量损失函数的概念,它把功能波动与经济损失联系起来。

田口先生把产品(或工艺项目)看做一个系统,那个系统的因素分为输入因素(可再分为可控因素X和不可控因素Z)和输出因素(即质量特性或响应)y,如图2所示。

系统的设计目标值为m。

 

干扰

图示

抗干扰性能

外部干扰(温度、湿度、尘埃、输入电压等环境条件波动)

可靠性

内部干扰(组成电源电路的元件材料老化)

稳定性

随机干扰(元件因“5M1E”影响的波动)

均匀性

图2传递系统图

田口先生以为系统产生的质量损失是由于质量特性y偏离设计目标值造成的,有偏离,就会有损失。

(一)望目特性的质量损失函数

一、概念

设产品的质量特性为Y,目标值为m。

当时,那么造成损失,越大,损失越大。

相应产品质量特性值Y的损失为L(Y),假设L(Y)在Y=m处存在二阶导数,那么按泰勒公式有

,设Y=m时,L(Y)=0,即L(m)=0,又因为L(Y)在Y=m时有极小值,因此,再略去二阶以上的高阶项,有

()

式中是不依托于Y的常数。

咱们称()式表示的函数为质量损失函数,如图3所示。

假设有n件产品,其质量特性值别离为那么此n件产品的平均质量损失为

()

 

图3质量损失函数

式()和式()说明,由于质量特性值波动所造成的损失与偏离目标值m的误差平方或误差均方成正比。

不仅不合格会造成损失,即便合格品也会造成损失,质量特性值偏离目标值越远,造成的损失越大。

这确实是田口先生关于产品质量概念的新观点。

把如此的二次方程用作质量损失函数,给咱们提供了很多重要信息,从图3的曲线能够看出。

第一,质量损失函数如持续的二次函数曲线所示,质量特性仅仅在标准(T)之内并非必然表示产品质量优良,最正确的质量是质量特性稳固在目标值上,波动最小。

这就进一步形象地说明了新的质量概念。

这种持续的质量损失概念与传统的损失概念不同,传统的损失概念是不持续的阶跃函数,只要质量特性在规定之内任何点,都视为没有损失,一旦超出标准的上下限,就发生损失,如图3中的实线所示。

第二,质量损失是指产品交付用户后造成的损失,它不是制造方由于产品质量缺点组成的质量本钱。

尽管田口的质量损失指的是对“社会的损失”,但这种损失最终仍然要阻碍到设计制造方,形成损失。

这种损失可分直接损失和间接损失两种情形,直接损失表此刻质量担保(包修、退赔等)费用方面,它与质量本钱中的外部损失本钱有关。

间接损失表此刻丢失市场,企业竞争力减弱,因此也能够用田口的质量损失(给社会造成的损失)在必然程度上来气宇制造方的损失。

第三,预期(平均)损失E(L)。

由于L(y)是随机变量,通经常使用L(y)是随机变量,通经常使用L(y)的数学期望E(L)来表示预期质量损失。

其表达式能够写成

()

从上式能够看出,咱们将质量特性波动分解成两部份,要提高产品质量就必需使方差和离差越小越好。

传统的设计方式,一样在专业设计(即系统设计)完成以后,即进行容差设计,中间没有参数设计这一进程,假设要进行质量改良,因为(方差)已经在专业设计进程决定了,因此一样是不能变的,只能致力于减小离差,也确实是说,要紧依托提高工序能力,用提高设备精度来提高产品精度,使加工的尺寸或其他的质量特点尽可能接近目标值。

田口先生那么以为应同时减小和。

一样说来,要紧应先通过参数设计减小,尽管难度较大,但潜力也较大,然后再减小(相对容易些)。

咱们明白随机的干扰因素是产生波动的本源,围绕着随机因素减小和有两种方式。

一种是通过更新技术,排除一些随机的干扰因素,也确实是说将一些随机因素转换为可控的系统因素,例如在设计中采纳高品级的元件和材料等,在制造工艺等条件方面如采纳高精度加工设备,对加工温度等加以操纵等。

显然,这些方法都是以昂贵的投入为代价的,是不经济的,而且往往也是难于行得通的,专门是在经济条件困难的情形下更是一条死胡同。

因此,在原系统设计的基础上,通过参数设计寻觅对随机因素不灵敏的可控因素的水平设置,用提高系统本身的抗干扰能力的方式使功能输出波动减小。

这是一种挖掘设计技术潜力的方式,即可提高质量又可不能提高乃至还可能降低本钱。

二、K的确信方式

(1)由功能界限和丧失功能的损失求K

所谓功能界限是指判定产品可否正常发挥功能的界限值。

当≤时,产品能正常发挥功能的界限值。

当>时,产品丧失功能。

设产品丧失功能时给社会带来的损失为元,由式()得

()

(2)由容差和不合格损失A求K

容差是指判定产品合格与否的界限。

当≤时,产品为合格品

当>时,产品为不合格品

设产品为不合格品时,工厂可采取报废、降级或返修等处置,现在给工厂带来的损失为A元。

由式()得

()

例1某电视机电源电路的直流输出电压Y的目标值为m=115V,功能界限=25V,丧失功能的损失为=300元。

a.求损失函数中的系数K;

b.已知不合格时的返修费为A=1元,求容差;

c.假设某产品的直流输出电压为Y=112V,此产品该不该投放市场。

解:

a.(元)因此损失函数为

b.由得

c.当Y=112V时,相应的损失为

假设不经返修就投放市场,工厂尽管少花1元返修费,但给用户造成元的损失。

例2用氧气切割某种装配件共20件,其尺寸与目标尺寸的误差为(单位:

mm)

,,,0,1,,,,,0,,,,,,0,,,

功能界限为=3mm,不然装配不上,由此造成的损失为元,求这批产品的平均质量损失。

解由公式()确信系数K

由公式()求平均质量损失

(二)望小特性的质量损失函数

望小特性Y是不取负值,希望Y越小越好且波动越小越好的特性。

因此它可看做是以0为目标值,但不能取负值的望目特性。

设Y为望小特性,由望目特性损失函数的式(),令m=0,就取得望小特性的损失函数为

Y>0()

式中K为比例常数,

L(Y)的图形如图4所示。

图4望小特性的损失函数

假设有n件产品,测得望小特性值为…,那么平均质量损失为

()

(三)望大特性的质量损失函数

望大特性Y是不取负值,希望Y越大越好,且波动越小越好的特性。

望大特性Y的倒数确实是望小特性,由望小特性的损失函数式(),能够取得望大特性的损失函数为

()

式中K为比例常数,K==

L(Y)的图形如图5所示。

 

图5望大特性的损失函数

假设有那件产品,测得望大特性值为…,,那么平均质量损失为

()

三、SN比

SN比起源于通信领域,作为评判通信设备,线路,信号质量的优良性指标。

田口先生将这一概念引伸到了质量工程中,作为评判产品质量特性稳固性的指标。

(一)灵敏度

灵敏度是评判产品质量特性平均值的指标,设产品的质量特性Y为随机变量,其期望值为μ,那么μ2称为Y的灵敏度。

一、平均值

设有n个质量特性值Y1,Y2,…Yn,那么

()

称为产品质量特性Y的平均值,是μ的无偏估量。

二、灵敏度

灵敏度μ2的估量的计算公式为

()

其中

()

()

的μ2的无偏估量。

在实际计算时,仿照通信理论取经常使用对数化为分贝(dB)值,用S表示。

()

在质量工程学中,将S称为质量特性Y的灵敏度。

(二)望目特性的SN比

田口先生概念的望目特性的SN比

()

SN比η的估量的计算公式为

()

在实际计算时,取经常使用对数化为分贝(dB)值,仍用η表示

()

在大多数情形下,η近似服从正态散布,因此可用方差分析进行统计分析。

(三)望小特性的SN比

田口先生以为关于望小特性Y,一方面希望Y越小越好,另一方面,希望Y的波动越小越好,因此希望灵敏度μ2和方差σ2均越小越好。

因此田口先生概念望小特性的SN比为

()

η的估量公式为

()

取经常使用对数化为分贝(dB)值,那么取得望小特性SN的计算公式为

()

(四)望大特性的SN比

设Y为望大特性,那么为望小特性。

因此将望小特性SN的估量式()、式()中的Yi变换成,可别离取得望大特性SN比的估量公式

()

()

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1