小学奥数题及答案Word格式文档下载.docx

上传人:b****6 文档编号:21601551 上传时间:2023-01-31 格式:DOCX 页数:11 大小:23.62KB
下载 相关 举报
小学奥数题及答案Word格式文档下载.docx_第1页
第1页 / 共11页
小学奥数题及答案Word格式文档下载.docx_第2页
第2页 / 共11页
小学奥数题及答案Word格式文档下载.docx_第3页
第3页 / 共11页
小学奥数题及答案Word格式文档下载.docx_第4页
第4页 / 共11页
小学奥数题及答案Word格式文档下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

小学奥数题及答案Word格式文档下载.docx

《小学奥数题及答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《小学奥数题及答案Word格式文档下载.docx(11页珍藏版)》请在冰豆网上搜索。

小学奥数题及答案Word格式文档下载.docx

1/20=20小时表示乙单独完成需要20小时。

乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;

如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

由题意可知

1/甲+1/乙+1/甲+1/乙+……+1/甲=1

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×

=1

(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多天)

1/甲=1/乙+1/甲×

(因为前面的工作量都相等)

得到1/甲=1/乙×

2

又因为1/乙=1/17

所以1/甲=2/17,甲等于17÷

2=天

5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

答案为300个

120÷

(4/5÷

2)=300个

可以这样想:

师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;

如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?

答案是15棵

算式:

(1/6-1/10)=15棵

7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

答案45分钟。

(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷

18=1/36表示甲每分钟进水

最后就是1÷

(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

答案为6天

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

乙做3天的工作量=甲2天的工作量

即:

甲乙的工作效率比是3:

甲、乙分别做全部的的工作时间比是2:

3

时间比的差是1份

实际时间的差是3天

所以3÷

(3-2)×

2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×

2+1/(x+2)×

(x-2)=1

解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:

停电多少分钟?

答案为40分钟。

设停电了x分钟

根据题意列方程

1-1/120*x=(1-1/60*x)*2

解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?

4*100=400,400-0=400假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?

4+2=6这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷

6=62表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只

100-62=38表示兔的只数

三.数字数位问题

首先研究能被9整除的数的特点:

如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;

如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:

1+2+3+4+5+6+7+8+9=45;

45能被9整除

依次类推:

1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450它有能被9整除

同样的道理,100~900百位上的数字之和为4500同样被9整除

也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

从1000~1999千位上一共999个“1”的和是999,也能整除;

最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。

求A+B分之A-B的最小值...

(A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B)

前面的1不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。

对于B/(A+B)取最小时,(A+B)/B取最大,

问题转化为求(A+B)/B的最大值。

(A+B)/B=1+A/B,最大的可能性是A/B=99/1

(A+B)/B=100

(A-B)/(A+B)的最大值是:

98/100

答案为或

因为A/2+B/4+C/16=8A+4B+C/16≈,

所以8A+4B+C≈,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

当是102时,102/16=

当是103时,103/16=

4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.

答案为476

设原数个位为a,则十位为a+1,百位为16-2a

根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198

解得a=6,则a+1=716-2a=4

原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.

答案为24

设该两位数为a,则该三位数为300+a

7a+24=300+a

a=24

该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?

答案为121

设原两位数为10a+b,则新两位数为10b+a

它们的和就是10a+b+10b+a=11(a+b)

因为这个和是一个平方数,可以确定a+b=11

因此这个和就是11×

11=121

它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.

答案为85714

设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x

根据题意得,(200000+x)×

3=10x+2

解得x=85714

所以原数就是857142

原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.

答案为3963

设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9

根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察

abcd

2376

cdab

根据d+b=12,可知d、b可能是3、9;

4、8;

5、7;

6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;

或d=8,b=4时成立。

先取d=3,b=9代入竖式的百位,可以确定十位上有进位。

根据a+c=9,可知a、c可能是1、8;

2、7;

3、6;

4、5。

再观察竖式中的十位,便可知只有当c=6,a=3时成立。

再代入竖式的千位,成立。

得到:

abcd=3963

再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.

设这个两位数为ab

10a+b=9b+6

10a+b=5(a+b)+3

化简得到一样:

5a+4b=3

由于a、b均为一位整数

得到a=3或7,b=3或8

原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?

答案是10:

20

(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:

21,因为事先计算时加了1分钟,所以现在时间是10:

四.排列组合问题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()

A768种B32种C24种D2的10次方中

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×

1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷

5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×

2=32种

综合两步,就有24×

32=768种。

2若把英语单词hello的字母写错了,则可能出现的错误共有()

A119种B36种C59种D48种

5全排列5*4*3*2*1=120

有两个l所以120/2=60

原来有一种正确的所以60-1=59

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为53秒

算式是(140+125)÷

(22-17)=53秒

可以这样理解:

“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米?

答案为100米

300÷

()=500秒,表示追及时间

500=2500米,表示甲追到乙时所行的路程

2500÷

300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为22米/秒

1360÷

(1360÷

340+57)≈22米/秒

关键理解:

人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷

340=4秒的路程。

也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。

由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。

从而可知猎犬与兔子的速度比是2a:

5/3a=6:

5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:

5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:

18分钟

设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:

y=5:

4

得x=1/72y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

9.甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

第二次相遇时离B地的距离是AB全程的1/5。

已知甲车在第一次相遇时行了120千米。

AB两地相距多少千米?

答案是300千米。

通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。

即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷

(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。

如果二人分别至B地,A地后都立即折回。

第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;

逆流8小时。

如果水流速度是每小时2千米,求两地间的距离?

(1/6-1/8)÷

2=1/48表示水速的分率

1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

相遇是已行了全程的七分之四表示甲乙的速度比是4:

时间比为3:

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;

从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:

甲乙两地相距多少千米?

把路程看成1,得到时间系数

去时时间系数:

1/3÷

12+2/3÷

30

返回时间系数:

3/5÷

12+2/5÷

两者之差:

(3/5÷

30)-(1/3÷

30)=1/75相当于1/2小时

去时时间:

1/2×

(1/3÷

12)÷

1/75和1/2×

(2/3÷

30)1/75

路程:

12×

〔1/2×

1/75〕+30×

30)1/75〕=(千米)

八.比例问题

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快

甲收8元,乙收2元。

“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以

甲还可以收回18-10=8元

乙还可以收回12-10=2元

刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?

答案22/25

最好画线段图思考:

把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

增加的成本2份刚好是下降利润的2份。

售价都是25份。

所以,今年的成本占售价的22/25。

3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:

4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米?

原来甲.乙的速度比是5:

现在的甲:

(1-20%)=4

现在的乙:

(1+20%)

甲到B后,乙离A还有:

总路程:

10÷

×

(4+5)=450千米

4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?

答案为64:

27

根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3”,可知体积是原来的4/3。

体积÷

底面积=高

现在的高是4/3÷

9/16=64/27,也就是说现在的高是原来的高的64/27

或者现在的高:

原来的高=64/27:

1=64:

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。

橘子正好占总数的13分之2。

一共运来水果多少吨?

第二题:

答案为65吨

橘子+苹果=30吨

香蕉+橘子+梨=45吨

所以橘子+苹果+香蕉+橘子+梨=75吨

橘子÷

(香蕉+苹果+橘子+梨)=2/13

说明:

橘子是2份,香蕉+苹果+橘子+梨是13份

橘子+香蕉+苹果+橘子+梨一共是2+13=15份

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1