新人教版八年级下册数学勾股定理教案Word文件下载.docx
《新人教版八年级下册数学勾股定理教案Word文件下载.docx》由会员分享,可在线阅读,更多相关《新人教版八年级下册数学勾股定理教案Word文件下载.docx(14页珍藏版)》请在冰豆网上搜索。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=5\52+12"
=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗?
完成23页的探究,补充下表,你能发现正方形A、B、C的关系吗?
A的面积(单位面积)
B的面积(单位面积)
C的面积(单位面积)
图1
图2
由此我们可以得出什么结论?
可猜想:
命题1:
如果直角三角形的两直角边分别为a、b,斜边为c,
那么
2、合作探究:
方法1:
已知:
在厶ABC中,/C=90,/A、/B、/C的对边为a、b、c。
求证:
a2+b2=c20
分析:
⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:
4Sk+S小正=S大正
4X丄ab+(b—a)2=c2,化简可证。
2
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀
方法2:
在厶ABC中,/C=90,/A、/B/C的对边为a、b、c。
求证:
a2+b2=c2。
左右两边的正方形边长相等,则两个正方形的面积相等。
12
左边S=4X-ab+c
右边S=(a+b)2
左边和右边面积相等,即
4Xab+c=(a+b)
化简可证。
课堂小结
作业布置:
作业P28页习题第1题板书设计:
勾股定理
(二)
会用勾股定理进行简单的计算。
树立数形结合的思想、分类讨论思想。
重点、难点
勾股定理的简单计算。
勾股定理的灵活运用。
复习勾股定理的文字叙述;
勾股定理的符号语言及变形。
学习勾股定理重要应用合作探究
问题
(1)在长方形ABCD中ABBCAC大小关系?
(2)—个门框的尺寸如图1所示.
1若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
2若薄木板长3米,宽1.5米呢?
3
若薄木板长3米,宽2.2米呢?
为什么?
例:
如图2,—个2.6米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.4米.
1求梯子的底端B距墙角O多少米?
2如果梯的顶端A沿墙下滑0.5米至C.
算一算,底端滑动的距离近似值(结果保留两位小数).
作业:
P28页习题第2、5题
板书设计:
勾股定理(三)
会用勾股定理解决较综合的问题。
树立数形结合的思想。
勾股定理的综合应用。
复习勾股定理的内容。
本节课探究勾股定理的综合应用。
合作探究:
利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点
与实数一一对应的理论。
如图,已知OA=OB
(1)说出数轴上点A所表示的数。
(2)在数轴上作出8对应的点?
-4
一A
-3
B
-2-10
1
变式训练:
在数轴上画出表示31,2、2的点课堂小结
P28页习题第6题板书设计:
勾股定理的逆定理
(一)
体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
探究勾股定理的逆定理的证明方法。
理解原命题、逆命题、逆定理的概念及关系。
掌握勾股定理的逆定理及证明。
勾股定理的逆定理的证明。
教学过程:
创设情境:
⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?
和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
合作交流:
222
1、如图17.2-2,若厶ABC的三边长a、b、c满足abc,试证明厶ABC
是直角三角形,请简要地写出证明过程.
AA!
/■!
/
7/---V
图17.2-2
2、.此定理与勾股定理之间有怎样的关系?
3.说出下列命题的逆命题。
这些命题的逆命题成立吗?
(1)两直线平行,内错角相等;
(2)如果两个实数相等,那么它们的绝对值相等;
(3)全等三角形的对应角相等;
(4)角的内部到角的两边距离相等的点在角的平分线上。
⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
课堂小结作业:
P34页习题第1题板书设计:
勾股定理的逆定理
(二)
灵活应用勾股定理及逆定理解决实际问题。
进一步加深性质定理与判定定理之间关系的认识。
重点、难点
教学过程
创设情境:
在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
四、自学展示:
如图,四边形ABCDAD//BC,AB=4BC=6CD=5AD=3求:
四边形ABCD勺面积。
归纳:
求不规则图形的面积时,要把不规则图形
⑴作DE//AB,连结BD则可以证明△ABD^AEDB(ASA;
⑵DE=AB=4BE=AD=3EC=EB=3⑶在△DEC中,3、4、5
勾股数,△DEC为直角三角形,DEIBC⑷利用梯形面积公式可解,或利用三角
形的面积。
合作探究
例2“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12<
1.5=18,PQ=16<
1.5=24,QR=30;
⑷因为242+182=302,PQ+PR=QR,根据勾股定理的逆定理,知/QPR=90;
⑸/PRSHQPR/QPS=45。
让学生养成“已知三边求角,利用勾股定理的逆定理”的意识作业:
P34页习题第3题
勾股定理复习
(一)
新课标对本节课的要求:
•理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边..勾股定理的应用•会运用勾股定理的逆定理,判断直角三角形•过程与方法:
激发学生的数学学习兴趣,促其勤奋学习。
教学重难点:
掌握勾股定理及其逆定理.
理解勾股定理及其逆定理的应用.
一、复习回顾
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;
本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:
1.勾股定理:
(1)直角三角形两直角边的■和等于的平方.就是说,对于任意的直
这就是勾股定理.
22|2■2222■22.2.22
acb,bca,cvabavcb,b*ca
J・
勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.
2.勾股定理逆定理
“若三角形的两条边的平方和等于第三边的平方,则这个三角形为.”
这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法•定理的证明采用了构造法•利用已知三
角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS证明两个三角形全等,证明定理成立.
3.勾股定理的作用:
(1)已知直角三角形的两边,求第三边;
(2)在数轴上作出表示n(n为正整数)的点.
勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:
利
用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.
(3)三角形的三边分别为a、b、c,其中c为最大边,若abc,则三角形是直角三角形;
若a2b2c2,则三角形是锐角三角形;
若a2b2c,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.
二、合作交流:
例1:
如果一个直角三角形的两条边长分别是6cm和8cm那么这个三角形的周长和面积分别是多少?
例4:
.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟
从一棵树的树梢飞到另一棵数的树梢,至少飞了
四、学习检测:
1.
如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是
111
A.7,24,25B.3丄,4丄,5-C.3,
2.如果把直角三角形的两条直角边同时扩大到原来的
5.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm另一只朝左挖,每
分钟挖6cm10分钟之后两只小鼹鼠相距()
A.50cmB.100cmC.140cmD.80cm
6.等腰△ABC的面积为12亦,底上的高AD=3cm,则它的周长为.
7.等边△ABC的高为3cm,以AB为边的正方形面积为.
8.—个三角形的三边的比为5:
12:
13,它的周长为60cm则它的面积是
勾股定理复习(课时二)
知识与技能•掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题.
过程与方法.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.
教学重难点重点:
掌握勾股定理以及逆定理的应用.
应用勾股定理以及逆定理.
考点一、已知两边求第三边
1.在直角三角形中,若两直角边的长分别为1cm2cm,则斜边长为.
2•已知直角三角形的两边长为3、2,则另一条边长是.
3.
在数轴上作出表示10的点.
4.已知,如图在△ABC中,AB=BC=CA=2gnAD是边BC上的高.求①AD的长;
②厶ABC的面积.
考点二、利用列方程求线段的长
1.如图,铁路上A,B两点相距25kmC,D为两村庄,DAIAB于A,CBLAB于B,已知DA=15kmCB=10km现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.
考点三、判别一个三角形是否是直角三角形
1.分别以下列四组数为一个三角形的边长:
(1)3、4、5
(2)5、12、13(3)8、
15、17
(4)4、5、6,其中能够成直角三角形的有
2.若三角形的三别是a2+b;
2ab,a2-b2(a>
b>
0),则这个三角形是
如图1,在厶ABC中,AD是高,且AD2BDCD,求证:
△ABC为直角三角形
考点四、灵活变通
1.在Rt△ABC中,a,b,c分别是三条边,/B=90°
c=2.直角三角形中,以直角边为边长的两个正方形的面积为
边为边长的正方形的面积为cm2.
3.如图一个圆柱,底圆周长6cm,高4cm,—只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm
4.
7cm2,8cm2,则以斜
一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是0网