湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx

上传人:b****5 文档编号:21444923 上传时间:2023-01-30 格式:DOCX 页数:11 大小:101.77KB
下载 相关 举报
湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx_第1页
第1页 / 共11页
湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx_第2页
第2页 / 共11页
湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx_第3页
第3页 / 共11页
湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx_第4页
第4页 / 共11页
湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx

《湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx(11页珍藏版)》请在冰豆网上搜索。

湖北省黄冈市区学校届九年级上期末检测数学试题含答案Word文档下载推荐.docx

D.方程x2-kx-1=0必有实数根

6.已知关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a

的取值范围是( )

A.a≥l          B.a>

l且a≠5

C.a≥l且a≠5       D.a≠5

7.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )

A.abc<

0          B.-3a+c<

0       

C.b2-4ac<

0        D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c.

二、填空题(本题共7小题,每小题3分,共21分)

8.若需从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是_______.

9.将抛物线y=x2向左平移5个单位,得到的抛物线解析式为____________.

10.已知m,n是方程x2+2x-5=0的两个实数根,则m-mn+n=_______.

11.用半径为3cm、圆心角是120°

的扇形围成一个圆锥的侧面,则这个圆锥底面半径为_______cm.

12.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是

,则黄球的个数为_______.

13.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,

,CE=1.则弦CD的长是_______.

14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°

,则旋转后点D的对应点D′的坐标是_______.

三、解答题(本题共10小题,共78分)

15.(本题5分)解方程:

x2-5=4x.

16.(本题8分)如图,△ABC的顶点都在方格线的交点(格点)上.

  

(1)将△ABC绕

C点按逆时针方向旋转90°

得到△A′B′C′,请在图中画出△A′B′C′.

  

(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.

  (3)若将△ABC绕原点O旋转180°

,A的对应点A1的坐标是( ).

17.(本题7分)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.

  

(1)求证:

AB=AC;

  

(2)求证:

DE为⊙O的切线.

18.(本题8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑

克牌,两

张牌面数字之和为奇数时,小亮获胜;

否则小明获胜.请问这个游戏规则公平吗?

并说明理由.

19.(本题8分)用矩形工件槽(如图I)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°

,尺寸如图(单位:

cm).将形状规则的铁球放入槽内时,若同时具有图l所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.

20.(本题9分)如图,抛物线y=x2+bx+c与x轴交于A(-l,0),B(3,0)两点.

  

(1)求该抛物线的解析式;

  

(2)求该抛物线的对称轴以及顶点坐标;

  (3)设

(1)中的抛物线上有一个动点P,若点P在该抛物线上滑动,且满足S△PAB=8,求出此时P点的坐标.

21.(本题8分)某新建火车站站前有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积

之和为5

6米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

22.(本题11分)某企业设计了一款工艺品,每件成本50元.为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低l元,每天就可多售出5件,但要求销售单价不得低于成本.

  

(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

  

(2)求出销售单价为多少元时,每天的销售利润最大?

最大利润是多少?

  (3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?

(每天的总成本=每件的成本×

每天的销售量)

23.(本题14分)如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B

的左边),与y轴交于点C,点D为抛物线的顶点.

  

(1)求点A、B、C的坐标;

  

(2)点M(m,

0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;

  (3)当矩形PQNM的周长最大时,m的值是多少?

并求出此时的△AEM的面积;

  (4)在(3)的条件下,当矩形P

MNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若

,求点F的坐标.

答案与解析:

1.D

  解析:

由因式分解法可知,x2-x-2=0可化为(x+

1)(x-2)=0

  故x+1=0或x-2=0,所以x1=-1,x2=2.

2.C

由二次函数性质可知,二次函数y=(x-1)2+2的二次项系数为1>

0,故开口向上,且对称轴为直线x=l,顶点坐标为(1,2),且与x轴无交点.

3.A

A选项中的图是中心对称图形,不是轴对称图形;

B、C选项中的图既是中心对称图形,也是轴对称图形;

D选项中的图是轴对称图形,不是中心对称图形.

4.C

由垂径定理可知,因为直径AB⊥CD,所以

,故∠BCD=2∠BAC=40°

5.D

A、B、C三个选项为随机事件,D选项中由一元二次方程判别△=(-k)2-4×

(-1)=k2+4>

0,所以方程必有实数根.

6.C

由题意可知,

  即

∴a≥1且a≠5.

7.B

由图可知,抛物线开口向下,故a>

0;

  而抛物线对称轴为直线x=2,故

,即b=-4a,所以b<

  抛物线与y轴交于负半轴,故c<

0,所以abc>

0.

  因为抛物线与x轴有两个交点,所以b2-4ac>

  又因为横坐标为1的点在x轴下方,所以a+b+c<

0,

  又因为b=-4a,所以-3a+c<

0,且y=ax2+bx+c=ax2-4ax+c=a(x-2)2-4a+c

  故将该函数图像向左平移2个单位后所得抛物线解析式为y=ax2-4a+c.

8.

9.y=(x+5)2(或y=x2+10x+25)

10.3

11.1

12.24

13.2

14.(2,10)或(-2,0)

15、解:

  方程x2-5=4x变形得x2-4x=5

  配方得:

x2-4x+4=9,即(x-2)2=9,开方得:

x-2=±

3,

  解得:

x1=5,x2=-1.(5分)

16、

(1)略;

(2)略;

(3)(2,-3)(8分)

17、

(1)证明:

连接AD.∵AB是⊙O的直径,∴∠ADB=90°

,∴AD⊥BC.

  又D是BC的中点,∴AB=AC.(3分)

  

(2)证明:

连接OD.∵O、D分别是AB、AC的中点,

  ∴OD∥AC,∴∠ODE=∠DEC=90°

  ∴OD⊥DE,∴DE是的切线.(7分)

18、答:

  此游戏规则不公平.(1分)

  理由如下:

  画树状图得:

  ∴共有12种

等可能的结果,两张牌面数字之和为奇数的有8种情况.(4分)

  ∴P(小亮获胜)

P(小明获胜)

,(6分)

  

,∴游戏规则不公平.(8分)

19、解:

  连D、E两点,交AB于点F.

  则OE⊥AB且AF=AB=

CD=8,OF=OE-EF=OE-AC=OE-4.

  连接OA,设OA=OE=r,在Rt△AOF中,OF2+AF2=OA2,即(r-4)2+82=r2,

  解得r=l0,∴2r=20(cm)

  答:

这种铁球的直径为20cm.(8分)

20、解:

  (1

)∵抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,

  ∴方程x2+bx+c=0的两根为x=-1或x=3,

  ∴-1+3=-b,

  -1×

3=c,

  ∴b=-2,c=-3,

  ∴二次函数

解析式y=x2-2x-3.(3分)

  

(2)y=x2-2x-3=(x-1)2-4,

  ∴抛物线的对称轴x=1,顶点坐标(1,-4).(5分)

  (3)设P的纵坐标为|yP|,

  ∵S△PAB=8,

  ∵AB=3+1=4,

  ∴|yP|=4,

  ∴yP=±

4.

  把yP=4代入解析式得,4=x2-2x-3,

  解得,

  把yP=-4代入解析式得,-4=x2-2x-3,

  解得,x=1,

  ∴点P在该抛物线上滑动到

或(1,-4)时,满足S△PAB=8.(9分)

21、解:

  设人行道的宽度为x米,根据题意得,

  (20-

3x)(8-2x)=56(5分)

  解得,x1=2,

(不合题意,舍去).(7分)

人行道的宽为2米.(8分)

22、解:

  

(1)y=(x-50)[50+5(100-x)]=(x-50)(-5x+550)=-5x2+800x-27500,

  ∴y=-5x2+800x-27500(50≤x≤100).(3分)

  

(2)y=-5x2+800x-27500=-5(x-80)2+4500

  ∴a=-5<

0且50≤x≤100,∴.当x=80时,y最大值=4500.(6分)

  (3)当y=4000时,-5(x-80)2+4500=4000,解得x1=70,x2=90.

  ∴当70≤x≤90时,每天的销售利润不低于4000元.

  又由每天的总成本不超过7000元,可得50(-5x+550)≤7000,解得x≥82.

  ∴82≤x≤90.又∵50≤x≤100,∴82≤x≤90.

  ∴销售单价应该控制在82元至90元之间.(11分)

23、解:

  

(1)由抛物线y=-x2-2x+3可知,C(0,3).

  令y=0,则0=-x2-2x+3,解x=-3或x=l,

  ∴A(-3,0),B(1,0).(3分)

  

(2)由抛物线y=-x2-2x+3可知,对称轴为x=-1.

  ∵M(m,0),则PM=-m2-2m+3,MN=(-m-1)×

2=-2m-2,

  ∴矩形PMNQ的周长=2(PM+MN)=(-m2-2m+3-2m-2)×

2=-2m2-8m+2.(6分)

  (3)∵-2m2-8m+2=-2(m+2)2+10,∴矩形的周长最大时,m=-2.(7分)

  ∵A(-3,0),C(0,3),设直线AC的解析式y=kx+b,解得k=l,b=3,

  ∴解析式y=x+3,令x=-2,则y=1,∴E(-2,1),

  ∴EM=1,AM=1,∴

.(10分)

  (4)∵M(-2,0),抛物线的对称轴为x=-l,

  ∴N应与原点重合,Q点与C点重合,∴DQ=DC,

  把x=-1代入y=-x2-2x+3,解得y=4,∴D(-1,4),∴

  ∵

,∴FG=4.

  设F(n,-n2-2n+3),则G(n,n+3),

  ∵点G在点F的上方且FG=4,∴(n+3)-(-n2-2n+3)=4.

  解得n=-4或n=1,∴F(-4,-5)或(1,0).(14分)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1