73 频数和频率文档格式.docx
《73 频数和频率文档格式.docx》由会员分享,可在线阅读,更多相关《73 频数和频率文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
4、王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()
组别
A型
B型
AB型
O型
频率
0.4
0.35
0.1
0.15
A.16人
B.14人
C.4人
D.6人
【分析】根据频数和频率的定义求解即可.
本班A型血的人数为:
40×
0.4=16.
故选:
A.
5、下列说法正确的是()
A.频数是表示所有对象出现的次数
B.频率是表示每个对象出现的次数
C.所有频率之和等于1
D.频数和频率都不能够反映每个对象出现的频繁程度
【分析】根据频率、频数的概念:
频数是表示一组数据中,符合条件的对象出现的次数;
频率是表示一组数据中,符合条件的对象出现的次数和总次数的比值.
频率、频数的性质:
一组数据中,各组的频率和等于1;
各组的频数和等于总数.
根据频率、频数的概念,得
A、频数是表示一组数据中,符合条件的对象出现的次数.故错误;
B、频率是表示一组数据中,符合条件的对象出现的次数和总次数的比值.故错误;
C、符合频率的意义.故正确;
D、频率能够反映每个对象出现的频繁程度.故错误.
6、某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生人数为()
A.1人B.2人C.5人D.10人
【分析】根据频数=总数×
频率,求解即可.
得该班在这个分数段的学生是50×
0.1=5.
故本题选C.
7、对某班50名学生的数学毕业成绩进行统计,90~99分的人数有10名,这一分数段的频率为______.
A.0.1B.0.2C.0.05D.0.3
【分析】只需运用频率=频数÷
总数,进行计算.
根据频率=频数÷
总数,得这一分数段的频率是10÷
50=0.2.
故选B
8、“WelcometoSeniorHighSchool.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是________.
【分析】数出这个句子中所有字母的个数和字母“o”出现的频数,由频率=频数÷
总个数计算.
在“WelcometoSeniorHighSchool.”这个句子中:
有25个字母,其中有5个“o”,
故字母“o”出现的频率为5÷
25=0.2.
故选B.
9、将某中学初三年级组的全体教师按年龄分成三组,情况如表格所示.则表中a的值应该是________.
A.1B.2C.4D.8
第一组
第二组
第三组
频数
a
频率
b
c
20%
【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.
∵1-20%=80%,
∴(6+10)÷
80%=20,
∴20×
20%=4.
即a=4.
故选C
10、小红统计了她家3月份的电话通话时间,并绘制成如下的频数分布表(表中数据含最大值但不含最小值):
通话时间(min)
0~2
2~4
4~6
6~8
8~10
通话次数
26
那么小红家3月份电话通话时间不超过6min的频数是__________.
A.46B.38C.34D.54
【分析】根据频数是指每个对象出现的次数进行计算即可.
小红家3月份电话通话时间不超过6min的频数是:
26+12+8=46,
故选A.
11、小明学完了统计知识后,从“中国环境保护网”上查询到他所居住城市2009年全年的空气质量级别资料,用简单随机抽样的方法选取30天,并列出下表:
空气质量级别
优
良
轻度污染
中度污染
重度污染
天数
15
请你根据以上信息解答下面问题:
(1)这次抽样中“空气质量不低于良”的频率为__________;
(2)根据这次抽样的结果,请你估计2009年全年(共365天)空气质量为优的天数是多少?
A.
(1)0.9;
(2)146
B.
(1)0.8;
(2)136
【分析】
(1)首先求出随机抽样的30天中“空气质量不低于良”的天数,然后根据频率=频数÷
数据总数得出结果;
(2)首先求出随机抽样的30天中空气质量为优的频率,然后根据样本估计总体的思想,得出2009年全年(共365天)空气质量为优的天数.
(1)∵这次抽样中,“空气质量不低于良”的频数是30-0-1-2=27,
∴频率为27÷
30=0.9;
(2)∵a=30-(15+2+1)=12,
∴365×
12÷
30=146.
故选A
12、下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:
9
(1)求出10月份出生的学生的频数和频率;
(2)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备多少份礼物?
A.
(1)5,0.125;
(2)4
B.
(1)5,0.1;
(2)3
(1)根据频数与频率的概念可得答案;
(2)根据频数的概念,读表可得2月份生日的频数,即可得答案.
(1)读表可得:
10月份出生的学生的频数是5,频率为5÷
40=0.125
(2)2月份有4位同学过生日,因此应准备4份礼物.
13、某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()
A.0.1B.0.17C.0.33D.0.4
【分析】首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.
∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,
而仰卧起坐总次数为:
3+10+12+5=30,
∴学生仰卧起坐次数在25~30之间的频率为12÷
30=0.4.
14、已知一组数据:
10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是()
A.6~7B.8~9C.10~11D.12~13
【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.
A中,其频率=2÷
20=0.1;
B中,其频率=6÷
20=0.3;
C中,其频率=8÷
20=0.4;
D中,其频率=4÷
20=0.2.
故本题选D.
15、某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有_______人.
A.60B.96C.108D.120
【分析】首先求得教师所占百分比,乘以总人数即可求解.
教师所占的百分比是:
1-46%-45%=9%,
则教师的人数是:
1200×
9%=108.
16、在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作抽样调查,统计如下:
旅游时间
当天往返
2~3天
4~7天
8~14天
半月以上
合计
人数(人)
76
120
80
19
300
若将统计情况制成扇形统计图,则表示旅游时间为“2~3天”的扇形圆心角的度数为____________.
A.120°
B.144°
C.150°
D.180°
【分析】根据有关数据先算出旅游时间为“2~3天”的在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×
360°
.
根据题意得,旅游时间为“2~3天”的占总数的120÷
300=40%,
圆心角为360°
×
40%=144°
难
1、学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制()套.
A.300
B.360
C.400
D.420
【分析】从图中可知,抽取的样本容量为100,其中中号的45,占到百分之四十五,从而根据总数800,即可求得整体中的中号数量.
在抽取的100个样本中,中号校服有45,
穿中号校服所占的比例为
45÷
100×
100%=45%,
可以估计七年级学生中穿中号校服的也占45%,
所以应订制中号校服800×
45%=360套.
2、某教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了某校八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中a的值,并求出该校八年级学生总数;
(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图;
(3)如果该市共有八年级学生6000人,请你估计”活动时间不少于4天”的大约有多少人?
A.
(1)200;
(2)略;
(3)4500
B.
(1)180;
(3)4200
(1)扇形统计图中,根据单位1减去其他的百分比即可求出a的值;
由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数;
(2)由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;
(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.
(1)根据题意得:
a=1-(5%+10%+15%+15%+30%)=25%,
八年级学生总数为20÷
10%=200(人);
(2)活动时间为5天的人数为200×
25%=50(人),活动时间为7天的人数为200×
5%=10(人),
补全统计图,如图所示:
(3)根据题意得:
6000×
(30%+25%+15%+5%)=4500(人),
则活动时间不少于4天的约有4500人.
3、某中学在一次数学单元知识检测中,抽取部分学生成绩(分数为整数,满分100分)将所得得数据整理后,画出频率分布直方图,已知图中从左到右的三个小组的频率分别为0.04,0.06,0.82,第二小组的频数为3.
(1)本次测试中抽样的学生有多少人?
(2)分数在90.5~100.5这一组有多少人?
(3)若这次成绩在80分以上(含80分)为优秀,则优秀率不低于多少?
A.
(1)50;
(2)8;
(3)80%
B.
(1)50;
(2)4;
(3)90%
(1)根据第三小组的频数除以相应的频率即可求出学生的总数;
(2)根据学生总数乘以第四小组的频率即可得到这组的学生数;
(3)由成绩80分以上(含80分)的学生数除以学生总数求出优秀率即可.
3÷
0.06=50(人),
则本次测试中抽样的学生有50人;
(2)分数在90.5~100.5这一组的频率为1-(0.04+0.06+0.82)=0.08,
则这组的学生为50×
0.08=4(人);
0.82+0.08=0.9=90%,
则优秀率不低于90%.
4、某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:
mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()
棉花纤维长度x
0≤x<8
8≤x<16
16≤x<24
24≤x<32
32≤x<40
A.0.8
B.0.7
C.0.4
D.0.2
【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.
在8≤x<32这个范围的频数是:
2+8+6=16,
则在8≤x<32这个范围的频率是:
16÷
20=0.8.
故选;
5、我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:
(1)统计表中a=_________,b=________;
(2)统计表后三行中哪一个数据是错误的?
该数据的正确值是多少?
区域
炎陵县
茶陵县
0.125
攸县
醴陵市
0.2
株洲县
株洲市城区
0.25
A.
(1)0.2,12;
(2)0.2,0.25
B.
(1)0.1,6;
(2)0.25,0.3
(1)由茶陵县频数为5,频率为0.125,求出数据总数,再用4除以数据总数求出a的值,用数据总数乘0.15得到b的值;
(2)根据各组频数之和等于数据总数可知各组频数正确,根据频率=频数÷
数据总数可知株洲市城区对应频率错误,进而求出正确值;
(1)∵茶陵县频数为5,频率为0.125,
∴数据总数为5÷
0.125=40,
∴a=4÷
40=0.1,b=40×
0.15=6.
故答案为0.1,6;
(2)∵4+5+6+8+5+12=40,
∴各组频数正确,
∵12÷
40=0.3≠0.25,
故株洲市城区对应频率0.25这个数据是错误的,该数据的正确值是0.3;
6、某校组织学生进行社会调查,并对学生的调查报告进行了评比,分数大于或等于80分为优秀,且分数为整数,下面是将某年级60篇学生调查报告的成绩进行整理,分成5组画出频率分布直方图,已知从左至右4个小组的频率分别是0.05,0.15,0.35,0.30.那么在这次评比中被评为优秀的调查报告有()
A.27篇B.21篇C.18篇D.9篇
【分析】由题意分析直方图可知:
分数在89.5-99.5段的频率,又由频率、频数的关系可得:
分数在79.5-99.5段的频率,进而可得评比中被评为优秀的调查报告的篇数,即答案.
由题意可知:
分数在89.5-99.5段的频率为1-0.05-0.15-0.35-0.30=0.15,则由频率=频数÷
总数得:
分数在79.5-99.5段的频率为0.30+0.15=0.45,则这次评比中被评为优秀的调查报告有60×
0.45=27篇;
7、下列说法错误的是()
A.在频数分布直方图中,频数之和为数据个数
B.频率等于频数与组距的比值
C.在频数分布表中,频率之和为1
D.频率等于频数与样本容量的比值
A、在频数分布直方图中,频数之和为数据个数,命题正确;
B、频率等于频数与总数的比值,故命题错误;
C、在频数分布表中,频率之和为1,命题正确;
D、频率等于频数与样本容量的比值,命题正确.
8、某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是()
A.出现正面的频率是6B.出现正面的频率是60%
C.出现正面的频率是4D.出现正面的频率是40%
【分析】根据频率=频数÷
数据总数,分别求出出现正面,反面的频率.
∵某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,
∴出现正面的频数是6,出现反面的频数是4,
出现正面的频率为6÷
10=60%;
出现反面的频率为4÷
10=40%.
9、某校初中三年级共有学生400人,为了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理,在得到的频数分布表中,若数据在0.95~1.15这一小组的频率为0.3,则可估计该校初中三年级学生视力在0.95~1.15范围内的人数约为()
A.6人B.30人C.60人D.120人
【分析】解答此题,应该利用公式:
频率=频数÷
数据总和进行计算.已知了0.95~1.15这一小组的频率,关键是确定数据总和,题目求的是“初中三年级学生”视力在0.95~1.15范围内的人数,显然,初中三年级的总人数应该是数据总和,代值计算即可.
根据题意可得:
共有学生400人且数据在0.95~1.15这一小组的频率为0.3,
那么在此范围的人数是400×
0.3=120(人).
10、某校为了了解学生在校午餐所需的时间,抽量了20名同学在校午餐所需的时间,获得如下的数据(单位:
分):
10,12,15,10,16,18,19,18,20,28,22,25,20,18,18,20,15,16,21,16.
若将这些数据以4分为组距进行分组,则组数是()
A.4组B.5组C.6组D.7组
【分析】根据组数=(最大值-最小值)÷
组距计算,注意小数部分要进位.则(28-10)÷
4=4.5,所以组数为5.
根据组数=(最大值-最小值)÷
组距(小数部分要进位)
则(28-10)÷
4=4.5
所以组数为5.
11、已知20个数据如下:
25,21,23,25,27,29,25,24,30,29,26,23,25,27,26,22,24,25,26,28.
对这些数据编制频率分布表,其中24.5-26.5这一组的频率为()
A.0.40B.0.35C.0.25D.0.55
【分析】首先正确数出在24.5-26.5这组的数据;
再根据频率、频数的关系:
数据总和进行计算.
其中在24.5-26.5组的共有8个,
则24.5-26.5这组的频率是8÷
20=0.40.