反应动力学方法Word文档格式.docx
《反应动力学方法Word文档格式.docx》由会员分享,可在线阅读,更多相关《反应动力学方法Word文档格式.docx(20页珍藏版)》请在冰豆网上搜索。
Brindley和Sharp法:
对方程dAfC)exp(・E/RT)进行变换得方程:
dT(3
(3d:
Aexp(-E/RT)(9)
f(:
)dT
对该两边直接取对数有:
3d°
E
InInA(10)
)dTRT
由式(11)可以看出,方程两边成线性尖系。
通过试探不同的反应机理函数、不同温度T时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E、指前因子A和机理函数f(a).
2.2Kissinger法
Kissinger在动力学方程时,假设反应机理函数为的动力学方程表示为:
n
fQ\=门,柏甫
y■_E/RT
Ae(11)
该方程描绘了一条相应的热分析曲线,对方程(12)两边微分,得
E/RTn
dd:
nde-ertcI(1r)
_l——厂|A(1_□)+Ae”—•
A(1
E/RT
.E/RT
RT
d-
EdT
_E/rt
-Aen(1
FTRdt
-dT
1
p
d:
Idt
•n
(⑵
And-J
e
在热分析曲线的峰顶处,其一阶导数为零,即边界条件为:
T=Tp(13)
dd:
—J|=0(14)
dt-dt
将上述边界条件代入(13)式有:
dT
E—
Htn1E/RT
-An(1_□p)_e_(15)
Kissinger研究后认为「1_宀)心与B无尖,其值近似等于1,因此,从方程
(16)可变换为:
(16)
对方程(15)两边取对数,得方程(18),也即Kissinger方程:
In
E1
i=l,2,,,4
EkRT.
(17)
方程(18)表明,In成线性尖系,将二者作图可以得到一条直
2
「丿TPi
线,从直线斜率求E,从截距求九,其线性相尖性一般在0.9以上2.3两点法
Kissinger法是在有假定条件下得到的简化方程。
如果我们不作任何假设,只
是利用数学的方法进行,可以得到两点法。
由方程
(2)=(5)知
二Ae町C)dt
方程(19)两边对T微分,得这相当于对DSC曲线求二阶导,为的是求DSC曲线的拐点。
在DSC曲线的拐点处,我们有边界条件:
我们得到第一个方程:
(20)
方程(20)两边对T微分,得
d件]
氏2聋3AE
f.RrO_E/RT.
2H)ejf()e+
BRT
E-2EBT„i
fH(-)fC)e—=o(22)
RT.
联立方程(21)和(22),即得到只与反应温度T、机理函数f(0有尖的方
程如下:
2RTi
2EUE
丫[E,f(:
)1=(BCD)e24
RT,
E
EeA
式中:
f:
mR2T『
r.T
i
RTT
通过解方程就可求出非等温反应动力学参数E和A的值。
在该方法中,只需要知道升温速率B,拐点的温度Ti、分解百分数a,峰顶的温度£
、分解百分数術,就可以试算不同的f(a)以求解出对应于该f(a)时的活化能E值、指前因子A值。
二积分法
对于积分法)G(>
)二航
则由方程(8)求积分得
ad.At
At
GC)
二Toexp(-E/RT)dT二
°
exp(-E/RT)dT
f(a)3
3
AE□-eAE
AEe"
:
2dup(u)=
(u)(23)
(3Ru3R
3Ru
对P(u)的不同处理)构成了一系列的积分法方程’其中最著名的方法和方
程如下:
3.1Ozawa法
通过对方程(23)变换5得Ozawa公式:
方程(24)中的E,可用以下两种方法求得。
方法1:
由于不同Pi下各热谱峰顶温度皿处各“值近似相等,因此可用
“logp・・・・"
成线性尖系来确定E值。
令:
T
今logp
—1/TP(i二12I.)
Ea二04567—R
AE
b=log2.315
RG©
)
这样由式(24)得线性方程组
乙二ayb(i=1,2,丄)
解此方程组求出a,从而得E值。
Ozawa法避开了反应机理函数的选择而直接求出E值,与其它方法相比,它避免了因反应机理函数的假设不同而可能带来的误差。
因此往往被其它学者用来检验由他们假设反应机理函数的方法求出的活化能值,这是Ozawa法的一个
突出优点。
3・2Phadnis法
2da
该方程由Phadnis等人提出。
对于合适的机理函数,G)f(?
)与T
成线性
尖系,由此求出E值,但无法求出A值。
3.3Coats-Redfem近似式
取方程(23)右端括号内崩一项,得一级近似的第一种表达式
Coats-Redfern近似式
E/RTE
Ee.<
2H
E,u-2
€dT
P(u)二211
=e-
R
RuI
u
Vu丿
(26)
RT2RT
_E/RT
Pcr(U)
屮
并设f(〉)二(「)5右
E(2RT
由于对一般的反应温区和大部分的E值而言,・>〉1511・一・•
RTIE丿
方程(4・4)和(4・5)右端第一项几乎都是常数,当心时,|n1一*八厂
-T(1・n)
对一作图,都能得到一条直线,其斜率为
正确的n值而言)。
3.4MacCallum-Tanner近似式
该法无需对P(u)作近似处理,可以证明,对于一定的E值」logp(u)与1/T为线性尖系,并可表达为:
a
■logp(u)=u_
_T
而且,E对a也是线性尖系,可表达为:
a=ybE
于是有
V+bE
-logp(u)二u
虽然u对E不是线性尖系,但是logu对logE是线性尖系,即:
logu二logAcIogE
y+bE
-logp(u)二AE
0.4490.217E
0.001T
借助于附录A中列出的logp(u)~u表计算出相应的常数后,代入上式,得:
0.4357
-logPmt(u)二0.4828E
0.449-0.217E|>
0.001T
Pmt(U)=10
E活化能‘kcal/mol
上述方程称MacCallum-Tanner近似式。
4・计算结果判据
提出的选择合理动力学参数及最可几机理函数的五条判据是:
(1)用普适积分方程和微分方程求得的动力学参数E和A值应在材料热分解反应动力学参数值的正常范围内,即活化能E值在80-250kJ-mol1之间,指前因子的对数(IgA/L)值在7~30之间;
(2)用微分法和积分法计算结果的线性相矣系数要大于0.98;
(3)用微分法和积分法计算结果的标准偏差应小于0.3;
(4)根据上述原则选择的机理函数f(a)应与研究对象的状态相符;
(5)与两点法、Kissinger法、Ozawa法和其它微积分法求得的动力学参数值应尽量一致。
函数号函数名称
抛物线法则
Valensi方程
机理
一维扩散」D,Di减速a形a-t曲线二维扩散,园柱形对鳥:
-?
)称D2,减速形a-t曲线
枳分形式G
I-In(1
:
•).F
Jander方程
二维扩散,2D,n=1
二维扩散,2D,n=2
三维扩散,3D,nJ
12
G-B方程
(*)
三维扩散,球形对
称,
3D,D3,减速形a
曲线,n=2
-t
-1
(1
>
)3
3(1
三维扩散,球形对称,3D,D4,减速形a曲线
反Jander方程三维扩散,3D
(—
函数号函数名称
(1:
匕)3-1
积分形式G匕心微分形式f
9
Z.-L.-T•方程
(**)
三维扩散,3D
-1f
(1■:
)3-1
(
4
1U3
」
(1・「)
10
Avrami-Erofee
随机成核和随后生长5
A4»
•Tn(1・V)I4
-)Lin
(1-)14
V方程
S形a・t曲线,n
m=4
11
随机成核和随后生长,
A3,
(1・〉)
Lin(1・:
Lin(1・「)卩
v方程
■)
I3
S形a・t曲线,n二
m=3
Lin(1■:
)L
5
(1-r>
|・In(1・「)
L
2n一
13
A2,
賄和我楼和賄后牛%,
Lin(1・「)L
・「)
S形a・t曲线
n,m=2
14
1-ln(1-:
■)I3
》一:
・)丨一:
B,P
2ln(1
n=—
15
4(1_P)_1
1-ln(1<
■)r3
n(1
3n二——
A
16
Mample单行
随机成核和随后生长,假设
-ln(1-■)
1-Ct
法则,一级
每个颗粒上只有一个核心,
Ai,Fi,S形a-t曲线,n=1
m=1
17
Avrami-E
1/43
2(1_:
・)l_
1-ln(1
ln(1•:
ji-2
rofeev方程
n二一
函数号
函数名称
积分形式G
7、
微分形式f(a)
18
Avrami-Erofeev
随机成核和随后生长5n=2
Lln(1
■■■)A
—(1■:
•)Lln(1■:
・).F
方程
19
随机成核和随后生长,J3
<
-户
-(1T.:
)Lln(1—r:
J尸
20
随机成核和随后生长…=4
—n(1
-?
)r
丄(1■:
•)l_ln(1・?
)F
21
P.-T方程(十)
自催化反应,枝状成核,Au,
Bi(S形a・t曲线)
H1
22
MampelPower法
n—.*
4-4
则(幕函数法则)
23
n_.*
-3
3川3
24
1n二
-2
2用2
25
MampelPower法相边界反应(一维),Ri,n=1
1・(1・
-)1-?
26
3n=—
•工2
2丿
_・・2
27
n=2
•£
2
续表
28
反应级数
1n=—
1-(1
.:
.)4
4(1—:
•)
29
收缩球状(体积)相边界反应,球形对称,R3,
)3
3(1A)3
减速形a-t曲线,n=
31・
(1一:
(1-a)3
30
■>
n=3(三维)
J
31
收缩园柱体
(面相边界反应,园柱形对称,
积)
R2,减速形a-t曲线,
)2
2(1・:
32
n,n=2(二维)2
21・
(1~b:
(1-
33
1-(1
-:
w、
34
n=3
1-d
・:
(1-r)
35
n=4
)4
36
二级
化学反应,円,减速形a・t曲线
(1-:
)
37
化学反应
(1)」
_1
(1-:
)2
38
2/3级
2
(1)2
39
指数法则
.'
加速形a4曲线
In:
■
40
1—a
积分形式G(a)
41
三级
化学反应,Fa,减速形a
(17—)_L
(1-)3
-1曲线
42
S-B方程”卄)
固相分解反应SB(m)
jm([_r)n
43
化学反应,RO(n),
1・(1■二)2
(1_:
)•
J-n
1—n
44
J-M-A方程
)随机成核和随后生长,An,
1-ln(1-?
)i/n
n(1■:
)M-ln(1・>
)1n
JMA(n)
45
幕函数法则
Pi,加殊型a-1曲线
用1/n
n(:
.)⑵巾
*,Ginstling-Brounstein方程
**,Zhuralev-Lesokin-Tempelman方程
***,Prout-Tompkins方程
****,?
estok-Berggren方程
*****,Johnson-Mehl-Avrami方程
注:
函数No・1和27称谓不同,形式相同