单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx

上传人:b****5 文档编号:21204723 上传时间:2023-01-28 格式:DOCX 页数:9 大小:271.76KB
下载 相关 举报
单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx_第1页
第1页 / 共9页
单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx_第2页
第2页 / 共9页
单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx_第3页
第3页 / 共9页
单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx_第4页
第4页 / 共9页
单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx

《单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx(9页珍藏版)》请在冰豆网上搜索。

单相正弦波PWM逆变电路仿真报告SimulinkWord格式文档下载.docx

2.2.1单极性控制方式

调制信号Ur为正弦波,载波Uc在Ur的正半周为正极性的三角波,在Ur的负半周为负极性的三角波。

在Ur的正半周,V1保持通态,V2保持断态,在ur>

uc

时使V4导通,V3关断,uo=Ud;

在ur<

uc时使V3导通,V4关断,uo=O;

在Ur的负半周,V1保持断态,V2保持通态,在UrVUc时使V3导通,V4关断,

UO=-Ud;

在Ur>

uc时使V4导通,V3关断,U0=0。

这样就得到了SPWM波形

U00

图2单极性PWM控制波形

2.2.2双极性控制方式

采用双极性方式时,在Ur的半个周期内,三角波不再是单极性的,而是有正有负,所得的PWM波也是有正有负。

在Ur的一个周期内,输出的PWM波只有土?

两种电平,而不像单极性控制时还有零电平。

在Ur的正负半周,对各开关器件的控制规律相同。

即Ur>

Uc时,给V1和V4导通信号,给V2和V3以关断信号,如io>

O,则V1和V4通,如io<

O,则VD1和VD4通,不管哪种情况都是输出电压UO=Ud0Ur<

Uc时,给V2和V3导通信号,给V1和V4以关断信号,这时如iO<

O,则V2和V3通,女口iO>

O,则VD2和VD3通,不管哪种情况

都是输出电压uo=-U

||

||H||

图3双极性PWM控制波形

3.仿真过程:

3.1仿真主电路模型:

仿真模型如图4所示,其中的PWM模块为根据不同控制方式自定义的子

系统封装模块,设置该模块的参数为m(调制深度)、f(调制波频率)、fc(载波频率),方便仿真时快捷调整调制深度及载波比,来观察不同参数对逆变电路输出的影响。

UniversalBridge

匚urrentMeasurement

PWM

povnergui

■^"

DCVoltageSourM

Discre七巳,Ts=le-0OSs.

:

>

了JUFT

Multimeter

图4仿真主电路

图中的“UniversalBridge”模块,在对话框中选择桥臂数为2,即可组成单相全桥电路,开关器件选带反并联二极管的IGBT;

直流电压源模块设置为

300V;

“SeriesRLCBranch”模块去掉电容后将阻感负载分别设为1Q和2m

H;

在串联RLC支路模块的对话框下方选中测量电压和电流,再利用

“Multimeter”模块即可观察逆变器的输出电压、电流;

“Powergui”模块设置为离散仿真模式,采样时间为1e-5s。

仿真时间设为0.06s,选择ode45仿真算法。

3.2单极性PWM逆变仿真

3.2.1单极性PWM控制信号产生原理

在本仿真中,采用同幅值、同频率的两条等腰三角载波分别与同幅值、同频

率,但相位相差180。

的两条正弦调制波比较,经过处理后得到PWM控制信号,原理如图5所示。

由于两个桥臂是分开控制的同一桥臂上的两个开关在控制上仍然互补。

在输出电压的半个周期内,电压极性只在一个方向变化,故称为单极性控制。

J

L

]

1

T

n

11

LI

JC

-

%

图5单极性PWM控制信号产生原理

322单极性控制仿真模型

图6单极性PWM控制信号产生模型

在图6中,正弦波m?

sin?

2nft以及m?

2nf+n)模块组合产生,与频率为fc的等腰三角波比较后,经过处理产生单极性PWM控制信号。

3.2.3进行仿真及波形记录

(1)调制深度m设为0.5,基波频率f设为50Hz,载波频率fc设为基频的20倍,即1000Hz。

运行仿真主电路,可得输出电压、负载电流、直流侧电流如图7所示。

图7m=0.5,fc=1000Hz时单极性PWM逆变电路输出波形

对此时的输出电压及负载电流进行FFT分析,结果如图8所示。

输出电压基波幅值为150.4V,与理论值很接近,约为基波幅值的50%。

其THD为

124.27%。

而由于感性负载的存在,负载电流的THD为4.97%。

仿真⑵在

(1)的基础上,将调制深度m改为1,其它参数不变,仿真后可得

此时输出电压、负载电流及直流侧输电流波形如图9所示

图9m=1,fc=1000Hz时单极性PWM逆变电路输出波形

对此时的输出电压及负载电流进行FFT分析,结果如图10所示。

输出电压基波幅值为300.1V,与理论值非常接近,其THD降为52.16%。

而同样由于感性负载的存在,负载电流的THD为1.99%,比

(1)中降低很多。

图10m=1,fc=1000Hz时单极性输出电压FFT分析结果

(rac»

EEPUnLi_芯迟bEz

仿真⑶在⑵的基础上将载波频率提高到fc=2000Hz.仿真后,得到此时

的输出电压,负载电流及直流侧电流波形如图11所示.

图11m=1,fc=2000Hz时单极性PWM逆变电路输出波形

此时的输出电压基波幅值为300.2V,THD为52.1%;

负载电流的THD降为1.09%,更加接近正弦

图12m=1,fc=2000Hz时单极性负载电流FFT分析结果

=EC⑷ErapunUL£

6es

3.2.4单极性控制仿真结果分析

对比仿真⑴、⑵、⑶的仿真波形及FFT分析结果可以看出,相对于⑴的结

果,

(2)的结果波形中电压中心部分明显加宽,THD明显减小,负载电流波形更加光滑;

而(3)的结果波形中输出电压中心加宽更明显,负载电流的正弦度也更好了。

由此可见调制深度m与载波比对波形的影响很大,参数值越大,逆变输出效果越好。

3.3双极性PWM逆变仿真

331双极性PWM控制信号产生原理

相对于单极性控制,双极性PWM控制较为简单,将正弦调制信号与双极性

三角载波进行比较后经过简单处理,即可产生PWM控制信号。

其原理如图3所示。

3.3.2双极性PWM控制信号产生模型

图13双极性PWM控制信号产生模型

图13中,同样由时钟信号经过处理产生的正弦波与频率为fc的双极性等腰

三角波比较后,经过处理即可得到双极性PWM控制信号。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 城乡园林规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1