高中物理常见模型Word格式.docx

上传人:b****6 文档编号:21152990 上传时间:2023-01-28 格式:DOCX 页数:14 大小:238.74KB
下载 相关 举报
高中物理常见模型Word格式.docx_第1页
第1页 / 共14页
高中物理常见模型Word格式.docx_第2页
第2页 / 共14页
高中物理常见模型Word格式.docx_第3页
第3页 / 共14页
高中物理常见模型Word格式.docx_第4页
第4页 / 共14页
高中物理常见模型Word格式.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

高中物理常见模型Word格式.docx

《高中物理常见模型Word格式.docx》由会员分享,可在线阅读,更多相关《高中物理常见模型Word格式.docx(14页珍藏版)》请在冰豆网上搜索。

高中物理常见模型Word格式.docx

设A与挡板碰撞无机械能损失,碰撞时间可忽略不计,g取10m/s2,求:

(1)A、B最后速度的大小;

(2)铁块A与小车B之间的动摩擦因数;

(3)铁块A与小车B的挡板相碰撞前后小车B的速度,并在图乙坐标中画出A、B相对滑动过程中小车B相对地面的速度v-t图线。

图甲               

图已

2.平抛与圆周运动

1.如图所示,ab为竖直平面内的半圆环acb的水平直径,c为环上最低点,环半径为R。

将一个小球从a点以初速度v0沿ab方向抛出,设重力加速度为g,不计空气阻力,则(  )

A.当小球的初速度v0=

时,落到环上时的竖直分速度最大

B.当小球的初速度v0<

时,将撞击到环上的圆弧ac段

C.当v0取适当值,小球可以垂直撞击圆环D.无论v0取何值,小球都不可能垂直撞击圆环

2.如图所示,斜轨道与半径为R的半圆轨道平滑连接,点A与半圆轨道最高点C等高,B为轨道的最低点.现让小滑块(可视为质点)从A点开始以速度v0沿斜面向下运动,不计一切摩擦,关于滑块运动情况的分析,正确的是(  )

A.若v0=0,小滑块恰能通过C点,且离开C点后做自由落体运动

B.若v0=0,小滑块恰能通过C点,且离开C点后做平抛运动

C.若v0=

,小滑块恰能到达C点,且离开C点后做自由落体运动

D.若v0=

,小滑块恰能到达C点,且离开C点后做平抛运动

3.抛体运动在各类体育运动项目中很常见,如乒乓球运动。

现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力。

(设重力加速度为g)

(1)若球在球台边缘O点正上方高度为h1处以速度v1水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x1。

(2)若球在O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台的P2点(如图虚线所示),求v2的大小。

(3)

若球在O点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3处,求发球点距O点的高度。

4.如图所示,竖直圆筒内壁光滑,半径为

,顶部有一个入口

,在

的正下方

处有一个出口

,一质量为

的小球沿切线方向的水平槽射入圆筒内,要使小球从

处飞出,小球射入入口

的速度

满足什么条件?

在运动过程中球对筒的压力多大?

5.小球A用不可伸长的细绳悬于O点,在O点的正下方有一固定的钉子B,OB=d,初始时小球A与O同水平面无初速度释放,绳长为L,为使小球能绕B点做完整的圆周运动,如图所示。

试求d的取值范围。

3.功能关系

1.如图所示,一物体从斜面上A点开始沿斜面向下运动,初动能为40J,经过B点时动能减少10J,机械能减少了30J,到达C点时恰好停止。

如果从C点开始沿斜面向上运动,恰好到达A点停止,则它在C点时的动能为___________J。

2.如图所示,小球以大小为v0的初速度由A端向右运动,到B端时的速度减小为vB;

若以同样大小的初速度由B端向左运动,到A端时的速度减小为vA。

已知小球运动过程中始终未离开该粗糙轨道。

比较vA、vB的大小,结论是

A.vA>

vBB.vA=vBC.vA<

vBD.无法确定

3.下图所示的小球以初速度为v0从光滑斜面底部向上滑,恰能到达最大高度为h的斜面顶部.A是内轨半径大于h的光滑轨道、B是内轨半径小于h的光滑轨道、C是内轨半径等于h的光滑轨道、D是长为

h的轻棒,其下端固定一个可随棒绕O点向上转动的小球.小球在底端时的初速度都为v0,则小球在以上四种情况中能到达高度h的有(  )

4.如图所示,一质量为M=5.0kg的平板车静止在光滑的水平地面上,平板车的上表面距离地面高h=0.8m,其右侧足够远处有一障碍A,一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的初速度从左端滑上平板车,同时对平板车施加一水平向右的、大小为5N的恒力F。

当滑块运动到平板车的最右端时,二者恰好相对静止,此时撤去恒力F。

当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点切入光滑竖直圆弧轨道,并沿轨道下滑。

已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=106°

取g=10m/s2,sin53°

=0.8,cos53°

=0.6。

(1)平板车的长度;

(2)障碍物A与圆弧左端B的水平距离;

(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小。

5.如图所示,AB是固定于竖直平面内的圆弧形光滑轨道,末端B处的切线方向水平.一物体(可视为质点)P从圆弧最高点A处由静止释放,滑到B端飞出,落到地面上的C点.测得C点和B点的水平距离,B点距地面的高度.现在轨道下方紧贴B端安装一个水平传送带,传送带的右端与B点的距离为.当传送带静止时,让物体P从A处由静止释放,物体P沿轨道滑过B点后又在传送带上滑行并从传送带的右端水平飞出,仍然落到地面上的C点.求:

(1)物体P与传送带之间的动摩擦因数;

(2)若在A处给物体P一个竖直向下的初速度,物体P从传送带的右端水平飞出后,落在地面上的D点,求OD的大小;

(3)若传送带驱动轮顺时针转动,带动传送带以速度v匀速运动,再把物体P从A处由静止释放,物体P落到地面上.设着地点与O点的距离为x,求出x与传送带上表面速度v的函数关系.

四.带电粒子在复合场中的运动

1.如图4-10甲所示,在真空中,有一半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M和N,两板间距为R,板长为2R,板间的中心线O1O2与磁场的圆心O在同一直线上.有一电荷量为q、质量为m的带正电的粒子以速度v0从圆周上的a点沿垂直于半径OO1并指向圆心O的方向进入磁场,当从圆周上的O1点水平飞出磁场时,给M、N两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N板的速度从N板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)

图4-10

(1)求磁场的磁感应强度B.

(2)求交变电压的周期T和电压U0的值.

(3)当t=

时,该粒子从M、N板右侧沿板的中心线仍以速度v0射入M、N之间,求粒子从磁场中射出的点到a点的距离.

2.如图4-12甲所示,质量为m、电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0.现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:

图4-12甲

(1)荧光屏上光斑的长度.

(2)所加磁场范围的最小面积.

3.在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O点静止释放,小球的运动曲线如图所示。

已知此曲线在最低点的曲率半径为该点到x轴距离的2倍,重力加速度为g。

(1)小球运动到任意位置P(x,y)处的速率v。

(2)小球在运动过程中第一次下降的最大距离ym。

(3)当在上述磁场中加一竖直向上场强为E(

)的匀强电场时,小球从O静止释放后获得的最大速率vm。

4.如图所示,相距为R的两块平行金属板M、N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.

(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小v;

(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;

(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求t的最小值.

5.如图21所示,在直角坐标系xoy的第一、四象限区域内存在边界平行y轴的两个有界的匀强磁场:

垂直纸面向外的匀强磁场Ⅰ、垂直纸面向里的匀强磁场Ⅱ。

O、M、P、Q为磁场边界和x轴的交点,OM=MP=L;

在第三象限存在沿y轴正向的匀强电场。

一质量为

带电量为

的带电粒子从电场中坐标为(

)的点以速度

沿+x方向射出,恰好经过原点O处射入区域Ⅰ又从M点射出区域Ⅰ(粒子的重力不计)。

(1)求第三象限匀强电场场强E的大小;

(2)求区域Ⅰ内匀强磁场磁感应强度B的大小;

(3)若带电粒子能再次回到原点O,问区域Ⅱ内磁场的宽度至少为多少?

粒子两次经过原点O的时间间隔为多少?

4.电磁感应的综合应用

1.如图所示,一个边长为a、电阻为R的等边三角形线框,在外力作用下,以速度v匀速穿过宽度均为a的两个匀强磁场。

这两个磁场的磁感应强度大小均为B,方向相反。

线框运动方向与底边平行且与磁场边缘垂直。

取逆时针方向的电流为正。

若从图示位置开始,线框中产生的感应电流i与沿运动方向的位移x之间的函数图象,下面四个图中正确的是.()

2.如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。

一导线框abcdef位于纸面内,况的邻边都相互垂直,bc边与磁场的边界P重合。

导线框与磁场区域的尺寸如图所示。

从t=0时刻开始,线框匀速横穿两个磁场区域。

以a→b→c→d→e→f为线框中的电动势ε的正方向,以下四个ε-t关系示意图中正确的是()

ABCD

3.如图所示,光滑矩形斜面ABCD的倾角θ=30°

,在其上放置一矩形金属线框abcd,ab的边长l1=1m,bc的边长l2=0.6m,线框的质量m=1kg,电阻R=0。

1Ω,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近;

重物质量M=2kg,离地面的高度为H=4.8m;

斜面上efgh区域是有界匀强磁场,方向垂直于斜面向上;

已知AB到ef的距离为S1=4.2m,ef到gh的距离S2=0.6m,gh到CD的距离为S3=3.8m,取g=10m/s2;

现让线框从静止开始运动(开始时刻,cd与AB边重合),发现线框匀速穿过匀强磁场区域,求:

(1)线框进入磁场时的速度v

(2)efgh区域内匀强磁场的磁感应强度B

(3)线框在通过磁场区域过程中产生的焦耳热Q

(4)线框从开始运动到ab边与CD边重合需经历多长时间

4.竖直放置的平行金属板M、N相距d=0.2m,板间有竖直向下的匀强磁场,磁感应强度B=0.5T,极板按如图所示的方式接入电路。

足够长的、间距为L=1m的光滑平行金属导轨CD、EF水平放置,导轨间有竖直向下的匀强磁场,磁感应强度也为B。

电阻为r=1

的金属棒ab垂直导轨放置且与导轨接触良好。

已知滑动变阻器的总阻值为R=4

,滑片P的位置位于变阻器的中点。

有一个质量为m=1.0×

10

kg、电荷量为q=+2.0×

C的带电粒子,从两板中间左端沿中心线水平射入场区。

不计粒子重力。

(1)若金属棒ab静止,求粒子初速度v0多大时,可以垂直打在金属板上?

(2)当金属棒ab以速度v匀速运动时,让粒子仍以相同初速度v0射入,而从两板间沿直线穿过,求金属棒ab运动速度v的大小和方向。

5.如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角

,导轨电阻不计。

磁感应强度为B1=2T的匀强磁场垂直导轨平面向上,长为L=1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m1=2kg、电阻为R1=1

两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为d=0.5m,定值电阻为R2=3

,现闭合开关S并将金属棒由静止释放,重力加速度为g=10m/s2,试求:

(1)金属棒下滑的最大速度为多大?

(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率P为多少?

(3)当金属棒稳定下滑时,在水平放置的平行金属间加一垂直于纸面向里的匀强磁场B2=3T,在下板的右端且非常靠近下板的位置有一质量为m2=3×

10—4kg、带电量为q=-1×

10-4C的液滴以初速度v水平向左射入两板间,该液滴可视为质点。

要使带电粒子能从金属板间射出,初速度v应满足什么条件?

5.弹簧类问题

1.如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块A、B,A、B的质量均为2kg,它们处于静止状态,若突然将一个大小为10N,方向竖直向下的力施加在物块A上,则此瞬间,A对B压力的大小为(取g=10m/s2)

A.5NB.15NC.25ND.35N

2.质量相等的两物块P、Q间用一轻弹簧连接,放在光滑的水平地面上,并使Q物块紧靠在墙上,现用力F推物块P压缩弹簧,如图所示,待系统静止后突然撤去F,从撤去力F起计时,则 ()

A.P、Q及弹簧组成的系统机械能守恒

B.P、Q的总动量保持不变

C.不管弹簧伸到最长时,还是缩短到最短时,P、Q的速度总相等

D.弹簧第二次恢复原长时,P的速度恰好为零,而Q的速度达到最大

3.如图所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为

一物体从钢板正上方距离为

的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

4.如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;

质量为m的小球A以初速度v0向右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离。

(弹簧始终处于弹性限度以内)

(1)在上述过程中,弹簧的最大弹性势能是多大;

(2)若开始时在B球的右侧某位置固定一块挡板(图中未画出),在A球与弹簧分离之前使B球与挡板发生碰撞,并在碰后立刻将挡板撤走。

设B球与固定挡板的碰撞时间极短,碰后B球的速度大小不变但方向相反。

试求出此后弹簧的弹性势能最大值的范围。

5.如图所示,将质量均为m厚度不计的两物块A、B用轻质弹簧相连接,只用手托着B物块于H高处,A在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A、B,B物块着地时解除弹簧锁定,且B物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A物块运动的速度为υ0,且B物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同.

(1)B物块着地后,A向上运动过程中合外力为0时的速度υ1;

(2)B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块运动的位移Δx;

(3)第二次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离也为H,然后由静止同时释放A、B,B物块着地后速度同样立即变为0.求第二次释放A、B后,B刚要离地时A的速度υ2.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1