数据挖掘论文英文版文档格式.docx
《数据挖掘论文英文版文档格式.docx》由会员分享,可在线阅读,更多相关《数据挖掘论文英文版文档格式.docx(11页珍藏版)》请在冰豆网上搜索。
Sincethethirdtechnologicalrevolution,theenergyhasbecomethelifelineofnationaleconomy,whiletheenergyonEarthislimited,soinbetweenthemajorpowersledtoanumberofoil-relatedorsimplyawarforoil.Inordertocompeteontheworld'
sresourcesandenergycontrol,ledtotheoutbreakoftwoworldwars.China'
scurrentconsumptionperiodcoincidedwiththeadventofhigh-energy,CNPC,Sinopec,CNOOCthreestate-ownedoilgiantshavebeen"
goingout"
todevelopinternationalmarkets,JilinProvinceasChina'
senergyoutputandenergyconsumptionprovince,isalsoactiveintheenergycorrespondingdiplomacy.Economicglobalizationandincreasinglyfiercecompetitionintheenergyenvironment,China'
senergypolicyisstilltherearemanyimperfections,toacertainextent,affecttheenergyandpopulationdevelopmentofJilinProvince,Chinaandeventosomeextentcanbesaidexistingpopulationcrisisistheenergycrisis.
[Keyword]
Energyconsumption;
Population;
Growth;
Analysis;
Datasource
Iselectdatafrom"
ChinaStatisticalYearbook2009"
JilinProvince1995-2007comprehensiveannualfinancialdata(Table1).Recordofthetotalpopulation(end)oftheannualdatasequence{Xt},mindfullofenergyconsumption(kgofstandardcoal)annualdatasequence{Yt}.
Table11995-2007olderandprovinceGDPpercapitaconsumptionlevelofalldata
Years
OfthetotalpopulationXt
Nationalenergy
consumption
(kg)Yt
LNOfthetotal
populationXt
LNNationalenergy
consumption(kg)Yt
1995
121121
15842626.8
11.70454532
16.57821476
1996
122389
17807599.5
11.71495978
16.69513586
1997
123626
16454620.6
11.72501616
16.61611688
1998
124761
14459799.9
11.73415519
16.48688294
1999
125786
15270420.4
11.74233733
16.54142821
2000
126743
16020315.2
11.74991669
16.58936817
2001
127627
16629798.1
11.75686723
16.62670671
2002
128453
17585215.7
11.76331836
16.68256909
2003
129227
19888035.3
11.76932583
16.80562887
2004
129988
21344029.6
11.77519742
16.87628261
2005
130756
23523004.4
11.78108827
16.97348941
2006
131448
25592925.6
11.78636662
17.05782653
2007
132129
26861825.7
11.791534
17.10621672
1.Timingdiagram
First,thetotalpopulationofTable1(end)oftheannualdataseries{Xt},fullofenergyconsumption(kgofstandardcoal)annualdataseries{Yt}aredrawntimingdiagram,inordertoobservetheannualpopulationdataseries{Xt}andnationalannualenergyconsumptiondatasequence{Yt}isstationary,byEVIEWSsoftwareoutputisshownbelow.
Figure1ofthetotalpopulation(end)sequencetimingdiagram
Figure2universallifeenergyconsumption(kgofstandardcoal)sequencetimingdiagram
Figure1isasequence{Xt}thetimingdiagram,Figure2isasequence{Yt}ofthetimingdiagram.
Twofiguresshowboththetotalpopulation(end)oruniversallifeenergyconsumption(kgofstandardcoal)indexshowedarisingtrend,thetotalpopulationoftheannualdataseries{Xt}andnationalannualenergyconsumptiondatasequence{Yt}notsmooth,thetwomayhavelong-termcointegrationrelationship.
2.Datasmoothing
(1)SequenceLogarithm
Figures1and2bytheintuitivediscoverydatasequence{Xt}and{Yt}showedasignificantgrowthtrend,asignificantnon-stationarysequence.Therefore,thetotalpopulationoffirstsequence{Xt}anduniversallifeenergyconsumption(kgofstandardcoal){Yt},respectivelyforthenumberoftreatmenttoeliminateheteroscedasticity.Thatlogx=lnXt,logy=lnYt,withaviewtothetargetsequenceintothelineartrendtrendsequence,byEVIEWSsoftwareoperations,thenumberofsequencetimingdiagram,inwhichthepopulationsequence{logx}timingdiagramshowninFigure3,thefullsequenceofenergyconsumption{logy}timingdiagramshowninFigure4.
Figure3Figure4
Figure3showsthetotalpopulationobservedsequence{logx}anduniversallifeenergyconsumption(kgofstandardcoal)sequence{logy}indextrendhasbeenbasicallyeliminated,thetwohaveobviouslong-termcointegrationrelationship,whichisthetransferfunctionmodelinganimportantprerequisite.However,theabovesequenceofnumbersisstillnon-stationaryseries.Respectively{logx}and{logy}sequenceofADFunitroottest(Table5andTable6),thetestresultsasshownbelow.
(2)Unitroottest
Herewewillbeontheprovince'
stotalpopulationandthewholesequence{Xt}energyconsumption(kgofstandardcoal)sequencedata{Yt}betheunitroottest,theresultsobtainedbyEviewssoftwareoperationisasfollows:
Table2Ofthetotalpopulationsequence{logx}
ObtainedfromTable2:
Totalpopulationsequencedata{Xt}oftheADFis-0.784587,significantlylargerthanthe1%levelinthecriticaltestvalueof-4.3260,the5%levelgreaterthanthecriticalvalueof-3.2195testing,butalsogreaterthan10%levelinthecriticaltestvalue-2.7557,sothetotalpopulationofthedatasequence{logx}{Xt}isanon-stationaryseries.
Table3Nationalenergyconsumption(kgofstandardcoal)unitroottest{logy}
ObtainedfromTable3:
Nationalenergyconsumption(kgofstandardcoal)data{Yt}oftheADFis0.489677,significantlylargerthanthe1%levelinthecriticaltestvalueof-4.3260,the5%levelgreaterthanthecriticaltestvalueof-3.2195,butalso10%greaterthanthecriticalleveltestvalue-2.7557,sothetotalpopulationofthesequence{logx}data{Yt}isanon-stationaryseries.
(3)Sequenceofdifferential
Becauseofthenumberoftimeseriesafterstillnotasmoothsequence,sotheneedforfurtherlogarithmofthetotalpopulationafterthesequence{logx}andafterafewoftheuniversallifeenergyconsumption(kgofstandardcoal)differentialsequencedata{logY}differentialsequenceswererecordedas{▽logx}and{▽logy}.Arerespectivelythesecond-orderdifferentialofthetotalpopulationofthesequence{▽logX}andsecond-orderdifferentialofthenationalenergyconsumption(kgofstandardcoal)sequencedata{▽logy}theADFunitroottest(Table7andTable8),testresultsthefollowingtable.
Table4
Table4showsthatthetotalpopulationofsecond-orderdifferentialsequence{▽logx}ADFvalueis-10.6278,apparentlylessthan1%levelinthecriticaltestvalueof-6.292057,lessthanthe5%levelinthecriticaltestvalue-4.450425also10%lessthanthelevelinthecriticaltestvalueof-3.701534,second-orderdifferentialofthetotalpopulationofthesequence{▽logx}isastationarysequence.
Table55
Table5showsthatthesecond-orderdifferentialuniversallifeenergyconsumption(kgofstandardcoal){▽logy}oftheADFis-6.395029,apparentlylessthan1%levelinthecriticaltestvalueof-4.4613,lessthanthe5%levelofthecriticaltestvalueof-3.2695,butalsolessthanthe10%levelthecriticalvalueof-2.7822testing,universallife,second-orderdifferentialconsumptionofenergy(kgofstandardcoal){▽logy}isastationarysequence.
3.Cointegration
(1)Cointegrationregression
Cointegrationtheoryinthe1980sthereEngleGrangerputforwardspecific,itisfromtheanalysisofnon-stationarytimeseriesstarttoexplorethenon-stationaryvariablecontainsthelong-runequilibriumrelationshipbetweenthenon-stationarytimeseriesmodelingprovidesanewsolution.
Asthepopulationtimeseries{Xt}anduniversallifeenergyconsumptiontimeseries{Yt}arelogarithmic,thetotalpopulationobtainedbytheanalysisoftimeseries{logX}anduniversallifeenergyconsumptiontimeseries{logY}aresecond-ordersinglewholesequence,sotheymayexistcointegrationrelationship.TheresultsobtainedbyEviewssoftwareoperationisasfollows:
Table6
ObtainedfromTable6:
D(LNE2)=-0.054819–101.8623D(LOGX2)
t=(-1.069855)(-1.120827)
R2=0.122487DW=1.593055
(2)Checkthesmoothnessoftheresidualsequence
FromtheEviewssoftware,getresidualsequenceanalysis:
Table7Residualseriesunitroottest
ObtainedfromTable7:
second-orderdifferentialvalueof-5.977460ADFresiduals,significantlylessthan1%levelinthecriticaltestvalue-4.6405,lessthan5%levelinthecriticaltestvalueof-3.3350,butalsolessthan10%levelinthecriticaltestvalueof-2.8169.Therefore,thesecond-orderdifferenceoftheresidualetisastationarytimeseriessequence.Expressedasfollows:
D(ET,2)=-0.042260-1.707007D(ET(-1),2)
t=(-0.783744)(-5.977460)
DW=1.603022EG=-5.977460,
SinceEG=-5.977460,checktheAFGcointegrationtestcriticalvaluetable(N=2,=0.05,T=16)received,EGvalueislessthanthecriticalvalue,sotoaccepttheoriginalsequenceetisstationaryassumption.Soyoucandeterminethetotalpopulationandenergyconsumptionofallthepeoplelivingtherearetwovariablesarelong-termcointegrationrelationship.
4.ECMmodeltoestablish
Throughtheaboveanalysis,afterthesecond-orderdifferentialofthelogarithmofthetotalpopulationtimeseries{▽logX}andsecond-orderdifferentialofLogarithmofofnationalenergyconsumptiontimeseries{▽logY}isastationarysequence,thesecond-orderdifferentialresidualsetisalsoastationaryseries.Sothatthenumberofsecond-orderdifferentialofthenationalenergyconsumptiontimeseries{▽logY}asthedependentvariable,afterthesecond-orderdifferentialofthelogarithmofthetotalpopulationtimeseries{▽logX}andsecond-orderdifferentialasresidualsetfromvariableregressionestimation,usingEviewssoftware,th