安徽高考数学理试卷及答案.doc
《安徽高考数学理试卷及答案.doc》由会员分享,可在线阅读,更多相关《安徽高考数学理试卷及答案.doc(11页珍藏版)》请在冰豆网上搜索。
2012年普通高等学校招生全国统一考试(安徽卷)
数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:
答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效,在试题卷、草稿纸上答题无效。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式:
如果事件与互斥;则
如果事件与相互独立;则
如果与是事件,且;则
第Ⅰ卷(选择题共50分)
一、选择题:
本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数满足:
;则()
【解析】选
(2)下列函数中,不满足:
的是()
【解析】选
与均满足:
得:
满足条件
(3)如图所示,程序框图(算法流程图)的输出结果是()
【解析】选
4.公比为等比数列的各项都是正数,且,则()
【解析】选
5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则
甲的成绩的平均数小于乙的成绩的平均数甲的成绩的中位数等于乙的成绩的中位数
甲的成绩的方差小于乙的成绩的方差甲的成绩的极差小于乙的成绩的极差
【解析】选
甲的成绩的方差为,乙的成绩的方差为
(6)设平面与平面相交于直线,直线在平面内,直线在平面内,且
则“”是“”的()
充分不必要条件必要不充分条件
充要条件 即不充分不必要条件
【解析】选
①②如果;则与条件相同
(7)的展开式的常数项是()
[来源:
Zxxk.Com]
【解析】选
第一个因式取,第二个因式取得:
第一个因式取,第二个因式取得:
展开式的常数项是
(8)在平面直角坐标系中,,将向量按逆时针旋转后,得向量
则点的坐标是()
【解析】选
【方法一】设
则
【方法二】将向量按逆时针旋转后得
则
(9)过抛物线的焦点的直线交抛物线于两点,点是原点,若;
则的面积为()
【解析】选[来源:
学科网]
设及;则点到准线的距离为
得:
又[来源:
Z*xx*k.Com]
的面积为
(10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换
的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品
的同学人数为()
或或或或
【解析】选
①设仅有甲与乙,丙没交换纪念品,则收到份纪念品的同学人数为人
②设仅有甲与乙,丙与丁没交换纪念品,则收到份纪念品的同学人数为人
第II卷(非选择题共100分)
[来源:
学科网]
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.
二.填空题:
本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.
(11)若满足约束条件:
;则的取值范围为[来源:
Z。
xx。
k.Com]
【解析】的取值范围为
约束条件对应边际及内的区域:
则
(12)某几何体的三视图如图所示,该几何体的
表面积是
【解析】表面积是
该几何体是底面是直角梯形,高为的直四棱柱
几何体的表面积是
(13)在极坐标系中,圆的圆心到直线的距离是
【解析】距离是
圆的圆心
直线;点到直线的距离是
(14)若平面向量满足:
;则的最小值是
【解析】的最小值是
(15)设的内角所对的边为;则下列命题正确的是
①若;则②若;则
③若;则④若;则
⑤若;则
【解析】正确的是①②③
①
②
③当时,与矛盾
④取满足得:
⑤取满足得:
三、解答题:
本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.
(16)(本小题满分12分)
设函数
(I)求函数的最小正周期;
(II)设函数对任意,有,且当时,;
求函数在上的解析式。
【解析】
(I)函数的最小正周期
(2)当时,
当时,
当时,
得:
函数在上的解析式为
(17)(本小题满分12分)
某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后
该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。
试题库中现共有道
试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。
(Ⅰ)求的概率;
(Ⅱ)设,求的分布列和均值(数学期望)。
【解析】(I)表示两次调题均为类型试题,概率为
(Ⅱ)时,每次调用的是类型试题的概率为
随机变量可取
,,
答:
(Ⅰ)的概率为
(Ⅱ)求的均值为
(18)(本小题满分12分)
平面图形如图4所示,其中是矩形,,,
。
现将该平面图形分别沿和折叠,使与所在平面都
与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答
下列问题。
。
(Ⅰ)证明:
;(Ⅱ)求的长;
(Ⅲ)求二面角的余弦值。
【解析】(I)取的中点为点,连接
则,面面面
同理:
面得:
共面
又面
(Ⅱ)延长到,使得:
,面面面面
(Ⅲ)是二面角的平面角
在中,
在中,
得:
二面角的余弦值为。
(19)(本小题满分13分)K]
设
(I)求在上的最小值;
(II)设曲线在点的切线方程为;求的值。
【解析】(I)设;则
①当时,在上是增函数
得:
当时,的最小值为
②当时,
当且仅当时,的最小值为
(II)
由题意得:
(20)(本小题满分13分)
如图,分别是椭圆
的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,
过点作直线的垂线交直线于点;
(I)若点的坐标为;求椭圆的方程;
(II)证明:
直线与椭圆只有一个交点。
【解析】(I)点代入
得:
①
又②③
由①②③得:
既椭圆的方程为
(II)设;则
得:
过点与椭圆相切的直线斜率
得:
直线与椭圆只有一个交点。
(21)(本小题满分13分)
数列满足:
(I)证明:
数列是单调递减数列的充分必要条件是
(II)求的取值范围,使数列是单调递增数列。
【解析】(I)必要条件
当时,数列是单调递减数列
充分条件
数列是单调递减数列
得:
数列是单调递减数列的充分必要条件是
(II)由(I)得:
①当时,,不合题意
②当时,
当时,与同号,
由
当时,存在,使与异号
与数列是单调递减数列矛盾
得:
当时,数列是单调递增数列