全国新课标卷Ⅰ理科数学精准解析.doc
《全国新课标卷Ⅰ理科数学精准解析.doc》由会员分享,可在线阅读,更多相关《全国新课标卷Ⅰ理科数学精准解析.doc(8页珍藏版)》请在冰豆网上搜索。
2014高考真题·全国新课标卷Ⅰ(理科数学)
1.[2014高考真题·新课标全国卷Ⅰ]已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )
A.[-2,-1]B.[-1,2)
B.[-1,1]D.[1,2)
1.A [解析]集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].
2.[2014高考真题·新课标全国卷Ⅰ]=( )
A.1+iB.1-i
C.-1+iD.-1-i
2.D [解析]===-1-i.
3.[2014高考真题·新课标全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
3.C [解析]由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.
4.[2014高考真题·新课标全国卷Ⅰ]已知F为双曲线C:
x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A.B.3
C.mD.3m
4.A [解析]双曲线的一条渐近线的方程为x+y=0.根据双曲线方程得a2=3m,b2=3,所以c=,双曲线的右焦点坐标为(,0).故双曲线的一个焦点到一条渐近线的距离为=.
5.[2014高考真题·新课标全国卷Ⅰ]4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )
A.B.
C.D.
5.D [解析]每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-=.
图11
6.、[2014高考真题·新课标全国卷Ⅰ]如图11,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( )
A B
C D
6.C [解析]根据三角函数的定义,点M(cosx,0),△OPM的面积为|sinxcosx|,在直角三角形OPM中,根据等积关系得点M到直线OP的距离,即f(x)=|sinxcosx|=|sin2x|,且当x=时上述关系也成立,故函数f(x)的图像为选项C中的图像.
7.[2014高考真题·新课标全国卷Ⅰ]执行如图12所示的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )
图12
A.B.C.D.
7.D [解析]逐次计算,依次可得:
M=,a=2,b=,n=2;M=,a=,b=,n=3;M=,a=,b=,n=4.此时输出M,故输出的是.
8.[2014高考真题·新课标全国卷Ⅰ]设α∈,β∈,且tanα=,则( )
A.3α-β=B.3α+β=
C.2α-β=D.2α+β=
8.C [解析]tanα===
==tan,因为β∈,所以+∈,又α∈且tanα=tan,所以α=,即2α-β=.
9.、[2014高考真题·新课标全国卷Ⅰ]不等式组的解集记为D,有下面四个命题:
p1:
∀(x,y)∈D,x+2y≥-2,
p2:
∃(x,y)∈D,x+2y≥2,
p3:
∀(x,y)∈D,x+2y≤3,
p4:
∃(x,y)∈D,x+2y≤-1.
其中的真命题是( )
A.p2,p3B.p1,p2
C.p1,p4D.p1,p3
9.B [解析]不等式组表示的区域D如图中的阴影部分所示,设目标函数z=x+2y,根据目标函数的几何意义可知,目标函数在点A(2,-1)处取得最小值,且zmin=2-2=0,即x+2y的取值范围是[0,+∞),故命题p1,p2为真,命题p3,p4为假.
10.[2014高考真题·新课标全国卷Ⅰ]已知抛物线C:
y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=( )
A.B.3
C.D.2
10.B [解析]由题知F(2,0),设P(-2,t),Q(x0,y0),则FP=(-4,t),=(x0-2,y0),由FP=4FQ,得-4=4(x0-2),解得x0=1,根据抛物线定义得|QF|=x0+2=3.
11.[2014高考真题·新课标全国卷Ⅰ]已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )
A.(2,+∞)B.(1,+∞)
C.(-∞,-2)D.(-∞,-1)
11.C [解析]当a=0时,f(x)=-3x2+1,存在两个零点,不符合题意,故a≠0.
由f′(x)=3ax2-6x=0,得x=0或x=.
若a<0,则函数f(x)的极大值点为x=0,且f(x)极大值=f(0)=1,极小值点为x=,且f(x)极小值=f=,此时只需>0,即可解得a<-2;
若a>0,则f(x)极大值=f(0)=1>0,此时函数f(x)一定存在小于零的零点,不符合题意.
综上可知,实数a的取值范围为(-∞,-2).
12.[2014高考真题·新课标全国卷Ⅰ]如图13,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
图13
A.6B.6C.4D.4
12.B [解析]该几何体是如图所示的棱长为4的正方体内的三棱锥E CC1D1(其中E为BB1的中点),其中最长的棱为D1E==6.
13.[2014高考真题·新课标全国卷Ⅰ](x-y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)
13.-20 [解析](x+y)8的展开式中xy7的系数为C=8,x2y6的系数为C=28,故(x-y)(x+y)8的展开式中x2y8的系数为8-28=-20.
14.[2014高考真题·新课标全国卷Ⅰ]甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:
我去过的城市比乙多,但没去过B城市;
乙说:
我没去过C城市;
丙说:
我们三人去过同一城市.
由此可判断乙去过的城市为________.
14.A [解析]由于甲没有去过B城市,乙没有去过C城市,但三人去过同一个城市,故三人去过的城市为A城市.又由于甲最多去过两个城市,且去过的城市比乙多,故乙只能去过一个城市,这个城市为A城市.
15.[2014高考真题·新课标全国卷Ⅰ]已知A,B,C为圆O上的三点,若=(+),则与的夹角为________.
15.90° [解析]由题易知点O为BC的中点,即BC为圆O的直径,故在△ABC中,BC对应的角A为直角,即AC与AB的夹角为90°.
16.[2014高考真题·新课标全国卷Ⅰ]已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)·(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为________.
16. [解析]根据正弦定理和a=2可得(a+b)(a-b)=(c-b)c,故得b2+c2-a2=bc,根据余弦定理得cosA==,所以A=.根据b2+c2-a2=bc及基本不等式得bc≥2bc-a2,即bc≤4,所以△ABC面积的最大值为×4×=.
17.、[2014高考真题·新课标全国卷Ⅰ]已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(1)证明:
an+2-an=λ.
(2)是否存在λ,使得{an}为等差数列?
并说明理由.
17.解:
(1)证明:
由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,
两式相减得an+1(an+2-an)=λan+1.
因为an+1≠0,所以an+2-an=λ.
(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1,
由
(1)知,a3=λ+1.
若{an}为等差数列,则2a2=a1+a3,解得λ=4,故an+2-an=4.
由此可得{a2n-1}是首项为1,公差为4的等差数列,
a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
18.、[2014高考真题·新课标全国卷Ⅰ]从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:
图14
(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
(i)利用该正态分布,求P(187.8(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.
附:
≈12.2.
若Z~N(μ,σ2),则p(μ-σp(μ-2σ18.解:
(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为
=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)(i)由
(1)知,Z~N(200,150),从而P(187.8(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.
19.G5、G11[2014高考真题·新课标全国卷Ⅰ]如图15,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
图15
(1)证明:
AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.
19.解:
(1)证明:
连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.
又AB⊥B1C,所以B1C⊥平面ABO.
由于AO⊂平面ABO,故B1C⊥AO.
又B1O=CO,故AC=AB1.
(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.
又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.
以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系O xyz.
因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.
=,
=AB=,
1=BC=.
设n=(x,y,z)是平面AA1B1的法向量,则
即
所以可取n=(1,,).
设m是平面A1B1C1的法向量,
则
同理可取m=(1,-,).
则cos〈n,m〉==.
所以结合图形知二面角A