全国新课标卷Ⅰ理科数学精准解析.doc

上传人:b****3 文档编号:2106939 上传时间:2022-10-26 格式:DOC 页数:8 大小:2.20MB
下载 相关 举报
全国新课标卷Ⅰ理科数学精准解析.doc_第1页
第1页 / 共8页
全国新课标卷Ⅰ理科数学精准解析.doc_第2页
第2页 / 共8页
全国新课标卷Ⅰ理科数学精准解析.doc_第3页
第3页 / 共8页
全国新课标卷Ⅰ理科数学精准解析.doc_第4页
第4页 / 共8页
全国新课标卷Ⅰ理科数学精准解析.doc_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

全国新课标卷Ⅰ理科数学精准解析.doc

《全国新课标卷Ⅰ理科数学精准解析.doc》由会员分享,可在线阅读,更多相关《全国新课标卷Ⅰ理科数学精准解析.doc(8页珍藏版)》请在冰豆网上搜索。

全国新课标卷Ⅰ理科数学精准解析.doc

2014高考真题·全国新课标卷Ⅰ(理科数学)

1.[2014高考真题·新课标全国卷Ⅰ]已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=(  )

               

A.[-2,-1]B.[-1,2)

B.[-1,1]D.[1,2)

1.A [解析]集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].

2.[2014高考真题·新课标全国卷Ⅰ]=(  )

A.1+iB.1-i

C.-1+iD.-1-i

2.D [解析]===-1-i.

3.[2014高考真题·新课标全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(  )

A.f(x)g(x)是偶函数

B.|f(x)|g(x)是奇函数

C.f(x)|g(x)|是奇函数

D.|f(x)g(x)|是奇函数

3.C [解析]由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.

4.[2014高考真题·新课标全国卷Ⅰ]已知F为双曲线C:

x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为(  )

A.B.3

C.mD.3m

4.A [解析]双曲线的一条渐近线的方程为x+y=0.根据双曲线方程得a2=3m,b2=3,所以c=,双曲线的右焦点坐标为(,0).故双曲线的一个焦点到一条渐近线的距离为=.

5.[2014高考真题·新课标全国卷Ⅰ]4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(  )

A.B.

C.D.

5.D [解析]每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-=.

图11

6.、[2014高考真题·新课标全国卷Ⅰ]如图11,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为(  )

   A         B

   C         D

6.C [解析]根据三角函数的定义,点M(cosx,0),△OPM的面积为|sinxcosx|,在直角三角形OPM中,根据等积关系得点M到直线OP的距离,即f(x)=|sinxcosx|=|sin2x|,且当x=时上述关系也成立,故函数f(x)的图像为选项C中的图像.

7.[2014高考真题·新课标全国卷Ⅰ]执行如图12所示的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=(  )

图12

A.B.C.D.

7.D [解析]逐次计算,依次可得:

M=,a=2,b=,n=2;M=,a=,b=,n=3;M=,a=,b=,n=4.此时输出M,故输出的是.

8.[2014高考真题·新课标全国卷Ⅰ]设α∈,β∈,且tanα=,则(  )

A.3α-β=B.3α+β=

C.2α-β=D.2α+β=

8.C [解析]tanα===

==tan,因为β∈,所以+∈,又α∈且tanα=tan,所以α=,即2α-β=.

9.、[2014高考真题·新课标全国卷Ⅰ]不等式组的解集记为D,有下面四个命题:

p1:

∀(x,y)∈D,x+2y≥-2,

p2:

∃(x,y)∈D,x+2y≥2,

p3:

∀(x,y)∈D,x+2y≤3,

p4:

∃(x,y)∈D,x+2y≤-1.

其中的真命题是(  )

A.p2,p3B.p1,p2

C.p1,p4D.p1,p3

9.B [解析]不等式组表示的区域D如图中的阴影部分所示,设目标函数z=x+2y,根据目标函数的几何意义可知,目标函数在点A(2,-1)处取得最小值,且zmin=2-2=0,即x+2y的取值范围是[0,+∞),故命题p1,p2为真,命题p3,p4为假.

10.[2014高考真题·新课标全国卷Ⅰ]已知抛物线C:

y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=(  )

A.B.3

C.D.2

10.B [解析]由题知F(2,0),设P(-2,t),Q(x0,y0),则FP=(-4,t),=(x0-2,y0),由FP=4FQ,得-4=4(x0-2),解得x0=1,根据抛物线定义得|QF|=x0+2=3.

11.[2014高考真题·新课标全国卷Ⅰ]已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )

A.(2,+∞)B.(1,+∞)

C.(-∞,-2)D.(-∞,-1)

11.C [解析]当a=0时,f(x)=-3x2+1,存在两个零点,不符合题意,故a≠0.

由f′(x)=3ax2-6x=0,得x=0或x=.

若a<0,则函数f(x)的极大值点为x=0,且f(x)极大值=f(0)=1,极小值点为x=,且f(x)极小值=f=,此时只需>0,即可解得a<-2;

若a>0,则f(x)极大值=f(0)=1>0,此时函数f(x)一定存在小于零的零点,不符合题意.

综上可知,实数a的取值范围为(-∞,-2).

12.[2014高考真题·新课标全国卷Ⅰ]如图13,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )

图13

A.6B.6C.4D.4

12.B [解析]该几何体是如图所示的棱长为4的正方体内的三棱锥E CC1D1(其中E为BB1的中点),其中最长的棱为D1E==6.

13.[2014高考真题·新课标全国卷Ⅰ](x-y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)

13.-20 [解析](x+y)8的展开式中xy7的系数为C=8,x2y6的系数为C=28,故(x-y)(x+y)8的展开式中x2y8的系数为8-28=-20.

14.[2014高考真题·新课标全国卷Ⅰ]甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,

甲说:

我去过的城市比乙多,但没去过B城市;

乙说:

我没去过C城市;

丙说:

我们三人去过同一城市.

由此可判断乙去过的城市为________.

14.A [解析]由于甲没有去过B城市,乙没有去过C城市,但三人去过同一个城市,故三人去过的城市为A城市.又由于甲最多去过两个城市,且去过的城市比乙多,故乙只能去过一个城市,这个城市为A城市.

15.[2014高考真题·新课标全国卷Ⅰ]已知A,B,C为圆O上的三点,若=(+),则与的夹角为________.

15.90° [解析]由题易知点O为BC的中点,即BC为圆O的直径,故在△ABC中,BC对应的角A为直角,即AC与AB的夹角为90°.

16.[2014高考真题·新课标全国卷Ⅰ]已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)·(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为________.

16. [解析]根据正弦定理和a=2可得(a+b)(a-b)=(c-b)c,故得b2+c2-a2=bc,根据余弦定理得cosA==,所以A=.根据b2+c2-a2=bc及基本不等式得bc≥2bc-a2,即bc≤4,所以△ABC面积的最大值为×4×=.

17.、[2014高考真题·新课标全国卷Ⅰ]已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.

(1)证明:

an+2-an=λ.

(2)是否存在λ,使得{an}为等差数列?

并说明理由.

17.解:

(1)证明:

由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,

两式相减得an+1(an+2-an)=λan+1.

因为an+1≠0,所以an+2-an=λ.

(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1,

(1)知,a3=λ+1.

若{an}为等差数列,则2a2=a1+a3,解得λ=4,故an+2-an=4.

由此可得{a2n-1}是首项为1,公差为4的等差数列,

a2n-1=4n-3;

{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.

所以an=2n-1,an+1-an=2.

因此存在λ=4,使得数列{an}为等差数列.

18.、[2014高考真题·新课标全国卷Ⅰ]从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:

图14

(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);

(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.

(i)利用该正态分布,求P(187.8

(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.

附:

≈12.2.

若Z~N(μ,σ2),则p(μ-σ

p(μ-2σ

18.解:

(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为

=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.

s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.

(2)(i)由

(1)知,Z~N(200,150),从而P(187.8

(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.

19.G5、G11[2014高考真题·新课标全国卷Ⅰ]如图15,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.

图15

(1)证明:

AC=AB1;

(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.

19.解:

(1)证明:

连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.

又AB⊥B1C,所以B1C⊥平面ABO.

由于AO⊂平面ABO,故B1C⊥AO.

又B1O=CO,故AC=AB1.

(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.

又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.

以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系O xyz.

因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.

=,

=AB=,

1=BC=.

设n=(x,y,z)是平面AA1B1的法向量,则

所以可取n=(1,,).

设m是平面A1B1C1的法向量,

同理可取m=(1,-,).

则cos〈n,m〉==.

所以结合图形知二面角A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1