双柱式举升机液压系统设计Word文档下载推荐.docx

上传人:b****5 文档编号:21036407 上传时间:2023-01-27 格式:DOCX 页数:29 大小:165.91KB
下载 相关 举报
双柱式举升机液压系统设计Word文档下载推荐.docx_第1页
第1页 / 共29页
双柱式举升机液压系统设计Word文档下载推荐.docx_第2页
第2页 / 共29页
双柱式举升机液压系统设计Word文档下载推荐.docx_第3页
第3页 / 共29页
双柱式举升机液压系统设计Word文档下载推荐.docx_第4页
第4页 / 共29页
双柱式举升机液压系统设计Word文档下载推荐.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

双柱式举升机液压系统设计Word文档下载推荐.docx

《双柱式举升机液压系统设计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《双柱式举升机液压系统设计Word文档下载推荐.docx(29页珍藏版)》请在冰豆网上搜索。

双柱式举升机液压系统设计Word文档下载推荐.docx

5.在满足上述要求的同时,尽量结构简单,操作方便,适用于整体或解体搬运尽量做到标准化,通用化,系列化。

第2章液压系统的传动计算

2.1液压系统的设计步骤与设计要求

液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。

着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。

 

2.1.1设计步骤

液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。

一般来说,在明确设计要求之后,大致按如下步骤进行。

1.确定液压执行元件的形式;

2.进行工况分析,确定系统的主要参数;

3.制定基本方案,拟定液压系统原理图;

4.选择液压元件;

5.液压系统的性能验算;

6.绘制工作图,编制技术文件。

2.1.2设计要求

设计要求是进行每项工程设计的依据。

在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。

1.主机的概况:

用途、性能、工艺流程、作业环境、总体布局等;

2.液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;

3.液压驱动机构的运动形式,运动速度;

4.各动作机构的载荷大小及其性质;

5.对调速范围、运动平稳性、转换精度等性能方面的要求;

6.自动化程序、操作控制方式的要求;

7.对防尘、防爆、防寒、噪声、安全可靠性的要求;

8.对效率、成本等方面的要求。

2.2载荷的组成和计算

通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。

液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。

压力决定于外载荷。

流量取决于液压执行元件的运动速度和结构尺寸。

2.2.1液压缸的载荷组成与计算

图2-1表示一个以液压缸为执行元件的液压系统计算简图。

各有关参数标注图上,其中FW是作用在活塞杆上的外部载荷,Fm中活塞与缸壁以及活塞杆与导向套之间的密封阻力。

右图2-1液压系统计算简图

作用在活塞杆上的外部载荷包括工作载荷Fg,导轨的摩擦力Ff和由于速度变化而产生的惯性力Fa。

(1)工作载荷Fg

常见的工作载荷有作用于活塞杆轴线上的重力、切削力、挤压力等。

这些作用力的方向如与活塞运动方向相同为负,相反为正。

(2)导轨摩擦载荷Ff

对于平导轨

(1)

对于V型导轨

(2)

式中G——运动部件所受的重力(N);

FN——外载荷作用于导轨上的正压力(N);

μ——摩擦系数,见表1;

α——V型导轨的夹角,一般为90°

(3)惯性载荷Fa

表2-1摩擦系数μ

导轨类型

导轨材料

运动状态

摩擦系数

滑动导轨

铸铁对铸铁

起动时

0.15~0.20

低速(υ<0.16m/s)

0.1~0.12

高速(υ>0.16m/s)

0.05~0.08

滚动导轨

铸铁对滚柱(珠)

0.005~0.02

淬火钢导轨对滚柱

0.003~0.006

静压导轨

铸铁

0.005

式中 

g——重力加速度;

g=9.81m/s2;

△υ——速度变化量(m/s);

△t——起动或制动时间(s)。

一般机械△t=0.1~0.5s,对轻载低速运动部件取小值,对重载高速部件取大值。

行走机械一般取

=0.5~1.5m/s2。

以上三种载荷之和称为液压缸的外载荷FW。

起动加速时FW=Fg+Ff+Fa 

(4)

稳态运动时FW=Fg+Ff 

(5)

减速制动时FW=Fg+Ff-Fa 

(6)

工作载荷Fg并非每阶段都存在,如该阶段没有工作,则Fg=0。

除外载荷FW外,作用于活塞上的载荷F还包括液压缸密封处的摩擦阻力Fm,由于各种缸的密封材质和密封形成不同,密封阻力难以精确计算,一般估算为

(7)

式中ηm——液压缸的机械效率,一般取0.90~0.95。

(8)

2.2.2液压马达载荷力矩的组成与计算

(1)工作载荷力矩Tg

常见的载荷力矩有被驱动轮的阻力矩、液压卷筒的阻力矩等。

(2)轴颈摩擦力矩Tf

Tf=μGr 

(9)

式中G——旋转部件施加于轴劲上的径向力(N);

μ——摩擦系数,参考表1选用;

r——旋转轴的半径(m)。

(3)惯性力矩Ta

(10)

式中ε——角加速度(rad/s2);

△ω——角速度变化量(rad/s);

△t——起动或制动时间(s);

J——回转部件的转动惯量(kg·

m2)。

起动加速时

(11)

稳定运行时

(12)

减速制动时

(13) 

计算液压马达载荷转矩T时还要考虑液压马达的机械效率ηm(ηm=0.9~0.99)。

(14)

根据液压缸或液压马达各阶段的载荷,绘制出执行元件的载荷循环图,以便进一步选择系统工作压力和确定其他有关参数。

2.3初选系统工作压力

压力的选择要根据载荷大小和设备类型而定。

还要考虑执行元件的装配空间、经济条件及元件供应情况等的限制。

在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看出不经济;

反之,压力选得太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。

一般来说,对于固定的尺寸不太受限的设备,压力可以选低一些,行走机械重载设备压力要选得高一些。

具体选择可参考表2和表3。

2.4计算液压缸的主要结构尺寸

液压缸有关设计参数见图2。

图a为液压缸活塞杆工作在受压状态,图b活塞杆工作在受拉状态。

活塞杆受压时

(15)

(16)

式中

——无杆腔活塞有效作用面积(m2);

——有杆腔活塞有效作用面积(m2);

p1——液压缸工作腔压力(Pa);

p2——液压缸回油腔压力(Pa),即背压力。

其值根据回路的具体情况而定,初算时可参照表2-4取值。

差动连接时要另行考虑;

D——活塞直径(m);

d——活塞杆直径(m)。

右图2-2液压缸主要设计参数

表2-2按载荷选择工作压力

载荷/kN

<5

5~10

10~20

20~30

30~50

>50

工作压力/MPa

<0.8~1

1.5~2

2.5~3

3~4

4~5

≥5

表2-3各种机械常用的系统工作压力

机械类型

机床

家业机械

小型工程机械

建筑机械

液压凿岩机

液压机

大中型挖掘机

重型机械

起重运输机械

磨床

组合机床

龙门创床

拉床

0.8~2

3~5

2~8

8~10

10~18

20~32

表4执行元件背压力

系统类型

背压力/MPa

简单系统或轻载节流调速系统

0.2~0.5

回油路带调速阀的系统

0.4~0.6

回油路设置有背压阀的系统

0.5~1.5

用补油泵的闭式回路

0.8~1.5

回油路较复杂的工程机械

1.2~3

回油路较短,且直接回油箱

可忽略不计

一般,液压缸在受压状态下工作,其活塞面积为

(17)

运用式(17)须事先确定A1与A2的关系,或是活塞杆径d与活塞直径D的关系,令杆径比φ=d/D,其比值可按表5和表6选取。

(18)

采用差动连接时,υ1/υ2=(D2-d2)/d2。

如果求往返速度相同时,应取d=0.71D。

对行程与活塞杆直径比l/d>10的受压柱塞或活塞杆,还要做压杆稳定性验算。

当工作速度很低时,还须按最低速度要求验算液压缸尺寸

式中A——液压缸有效工作面积(m2);

Qmin——系统最小稳定流量(m3/s),在节流调速中取决于回路中所设调速阀或节流阀的最小稳定流量。

容积调速中决定于变量泵的最小稳定流量。

υmin——运动机构要求的最小工作速度(m/s)。

如果液压缸的有效工作面积A不能满足最低稳定速度的要求,则应按最低稳定速度确定液压缸的结构尺寸。

另外,如果执行元件安装尺寸受到限制,液压缸的缸径及活塞杆的直径须事先确定时,可按载荷的要求和液压缸的结构尺寸来确定系统的工作压力。

液压缸直径D和活塞杆直径d的计算值要按国标规定的液压缸的有关标准进行圆整。

如与标准液压缸参数相近,最好选用国产标准液压缸,免于自行设计加工。

常用液压缸内径及活塞杆直径见表7和表8。

表2-5按工作压力选取d/D

≤5.0

5.0~7.0

≥7.0

d/D

0.5~0.55

0.62~0.70

0.7

表2-6按速比要求确定d/D

υ2/υ1

1.15

1.25

1.33

1.46

1.61

2

0.3

0.4

0.5

0.55

0.62

0.71

注:

υ1—无杆腔进油时活塞运动速度;

υ2—有杆腔进油时活塞运动速度。

表2-7常用液压缸内径D(mm)

40

50

63

80

90

100

110

125

140

160

180

200

220

250

表2-8活塞杆直径d(mm)

速比

缸径

22

28

35

45

55

3

60

70

2.5绘制液压系统工况图

工况图包括压力循环图、流量循环图和功率循环图。

它们是调整系统参数、选择液压泵、阀等元件的依据。

1)压力循环图——(p-t)图通过最后确定的液压执行元件的结构尺寸,再根据实际载荷的大小,倒求出液压执行元件在其动作循环各阶段的工作压力,然后把它们绘制成(p-t)图。

2)流量循环图——(Q-t)图根据已确定的液压缸有效工作面积或液压马达的排量,结合其运动速度算出它在工作循环中每一阶段的实际流量,把它绘制成(Q-t)图。

若系统中有多个液压执行元件同时工作,要把各自的流量图叠加起来绘出总的流量循环图。

3)功率循环图——(P-t)图绘出压力循环图和总流量循环图后,根据P=pQ,即可绘出系统的功率循环图。

第3章制定基本方案和绘制液压系统图

3.1制定基本方案

3.1.1制定调速方案

液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。

方向控制用换向阀或逻辑控制单元来实现。

对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。

对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。

速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。

相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。

节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。

此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。

其优点是没有溢流损失和节流损失,效率较高。

但为了散热和补充泄漏,需要有辅助泵。

此种调速方式适用于功率大、运动速度高的液压系统。

容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。

此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。

节流调速又分别有进油节流、回油节流和旁路节流三种形式。

进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速。

调速回路一经确定,回路的循环形式也就随之确定了。

节流调速一般采用开式循环形式。

在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。

开式回路结构简单,散热性好,但油箱体积大,容易混入空气。

容积调速大多采用闭式循环形式。

闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。

其结构紧凑,但散热条件差。

3.1.2制定压力控制方案

液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力,一般在节流调速系统中,通常由定量泵供油,用溢流阀调节所需压力,并保持恒定。

在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。

在有些液压系统中,有时需要流量不大的高压油,这时可考虑用增压回路得到高压,而不用单设高压泵。

液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路。

在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力。

3.1.3制定顺序动作方案

主机各执行机构的顺序动作,根据设备类型不同,有的按固定程序运行,有的则是随机的或人为的。

工程机械的操纵机构多为手动,一般用手动的多路换向阀控制。

加工机械的各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,通过电气行程开关发出电信号给电磁铁推动电磁阀或直接压下行程阀来控制接续的动作。

行程开关安装比较方便,而用行程阀需连接相应的油路,因此只适用于管路联接比较方便的场合。

另外还有时间控制、压力控制等。

例如液压泵无载启动,经过一段时间,当泵正常运转后,延时继电器发出电信号使卸荷阀关闭,建立起正常的工作压力。

压力控制多用在带有液压夹具的机床、挤压机压力机等场合。

当某一执行元件完成预定动作时,回路中的压力达到一定的数值,通过压力继电器发出电信号或打开顺序阀使压力油通过,来启动下一个动作。

3.1.4选择液压动力源

液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。

节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。

容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。

为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。

对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油。

对长时间所需流量较小的情况,可增设蓄能器做辅助油源。

油液的净化装置是液压源中不可缺少的。

一般泵的入口要装有粗过滤器,进入系统的油液根据被保护元件的要求,通过相应的精过滤器再次过滤。

为防止系统中杂质流回油箱,可在回油路上设置磁性过滤器或其他型式的过滤器。

根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。

3.2绘制液压系统图

整机的液压系统图由拟定好的控制回路及液压源组合而成。

各回路相互组合时要去掉重复多余的元件,力求系统结构简单。

注意各元件间的联锁关系,避免误动作发生。

要尽量减少能量损失环节。

提高系统的工作效率。

为便于液压系统的维护和监测,在系统中的主要路段要装设必要的检测元件(如压力表、温度计等)。

大型设备的关键部位,要附设备用件,以便意外事件发生时能迅速更换,保证主要连续工作。

各液压元件尽量采用国产标准件,在图中要按国家标准规定的液压元件职能符号的常态位置绘制。

对于自行设计的非标准元件可用结构原理图绘制。

系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号以及各电磁铁的代号,并附有电磁铁、行程阀及其他控制元件的动作表。

第4章液压元件的选择与专用件设计

4.1液压泵的选择

首先根据设计要求和系统工况确定泵的类型,然后根据液压泵的最大供油量和系统工作压力来选择液压泵的规格。

1.液压泵的最高供油压力

(1)

式中:

—执行元件的最高工作压力;

—进油路上总的压力损失。

如系统在执行元件停止运动时才出现最高工作压力,则

否则,须计算出油液流过进油路上的控制、调节元件和管道的各项压力损失,初算时可凭经验进行估计,对简单系统取

MPa,对复杂系统取

MPa。

2.确定液压泵的最大供油量

液压泵的最大供油量为

(2)

k—系统的泄漏修正系数(TheCorrectionCoefficientofSystemLeakage),一般取k=1.1~1.3,大流量取小值,小流量取大值;

—同时动作的各执行元件所需流量之和的最大值。

如果液压泵的供油量是按工进工况选取时,其供油量应考虑溢流阀的最小流量。

3.选择液压泵的规格型号

液压泵的规格型号按计算值在产品样本选取,为了使液压泵工作安全可靠,液压泵应有一定的压力储备量,通常泵的额定压力可比工作压力高25%—60%。

泵的额定流量则宜与

相当,不要超过太多,以免造成过大的功率损失。

4.选择驱动液压泵的电动机

驱动液压泵的电动机根据驱动功率和泵的转速来选择。

在整个工作循环中,泵的压力和流量在较多时间内皆达到最大工作值时,驱动泵的电动机功率(Power)为

(3)

—液压泵的总效率,数值可见产品样本。

限压式变量叶片泵的驱动功率,可按泵的实际压力流量特性曲线拐点处的功率来计算。

在工作循环中,泵的压力和流量变化较大时,可分别计算出工作循环中各个阶段所需的驱动功率,然后求其均方根值即可。

在选择电动机时,应将求得的功率值与各工作阶段的最大功率值比较,若最大功率符合电动机短时超载25%的范围,则按平均功率选择电动机;

否则应按最大功率选择电动机。

4.2液压阀的选择

1.阀的规格,根据系统的工作压力和实际通过该阀的最大流量,选择有定型产品的阀件。

溢流阀按液压泵的最大流量选取;

选择节流阀和调速阀时,要考虑最小稳定流量应满足执行机构最低稳定速度的要求。

控制阀的流量一般要选得比实际通过的流量大一些,必要时也允许有20%以内的短时间过流量。

2.阀的型式,按安装和操作方式选择。

4.3管道尺寸的确定

1.管道内径计算

Q——通过管道内的流量(m3/s);

υ——管内允许流速(m/s),见表10。

计算出内径d后,按标准系列选取相应的管子。

2.管道壁厚δ的计算

表4-1允许流速推荐值

管道

推荐流速/(m/s)

液压泵吸油管道

0.5~1.5,一般常取1以下

液压系统压油管道

3~6,压力高,管道短,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1