半导体废水及废气的处理Word文件下载.docx

上传人:b****5 文档编号:20759771 上传时间:2023-01-25 格式:DOCX 页数:36 大小:36.44KB
下载 相关 举报
半导体废水及废气的处理Word文件下载.docx_第1页
第1页 / 共36页
半导体废水及废气的处理Word文件下载.docx_第2页
第2页 / 共36页
半导体废水及废气的处理Word文件下载.docx_第3页
第3页 / 共36页
半导体废水及废气的处理Word文件下载.docx_第4页
第4页 / 共36页
半导体废水及废气的处理Word文件下载.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

半导体废水及废气的处理Word文件下载.docx

《半导体废水及废气的处理Word文件下载.docx》由会员分享,可在线阅读,更多相关《半导体废水及废气的处理Word文件下载.docx(36页珍藏版)》请在冰豆网上搜索。

半导体废水及废气的处理Word文件下载.docx

}

d.碱性再生废液-纯水系统碱性再生废液收集应用于废水处理系统之pH值调节用,如此可

减少化学药剂之使用量。

(2)废气处理系统

废气产生的设备约有离子布值机,化学清洗站,蚀刻机,炉管,溅镀机,有机溶剂与气瓶柜

等,其中有较高浓度污染的废气均先由该机台所属的LocalScrubber(局部洗涤机)先行

处理后,在经由全厂之中央废气处理系统做三次处理后,再排入大气中,以达到净化气体之

功能。

晶圆厂的废气常含有酸,碱性或腐蚀性,故处理系统的管材就必须能耐酸、碱性或腐蚀性,

故处理系统的管材就必须能耐酸、碱性,抗蚀性,甚至耐高温及防水性等,故表八乃将常用

材质及使用种类整理归纳。

而其废气处理种类及方式如下:

o}v_

1.一般性废气,其来源为氧化扩散炉的热气,烤箱及干式帮浦的排气,此废气可直接排放至

大气。

2.酸、碱性之废气,来源为化学清洗站,具刺激性及有害人体。

故一般以湿式洗涤塔做

水洗处理后再排入大气。

洗涤塔利用床体或湿润的表面可去除微米以上的粒子。

其气体与液体的接触方式有交叉(垂直交叉)流式、同向流式及逆向流式三种,而水流的设计上,有喷

嘴式,喷雾式,颈式及拉西环式等四种。

3.3.有机溶剂废气通常使用吸附式处理,其常用之吸附剂为活性碳,饱和后可以更换或

以再生方式处理。

4.含毒气性废气,其来源为化学气相沈积,干蚀刻机,扩散,离子布值机及磊晶等制程时所

产生。

在经机台本身的局部洗涤机的处理后,其后段的处理方法有吸附法,直接燃烧法及化

学反应法等数种。

尤其是薄膜成长和磊晶制程时SiH4气体,须特别注意,因其为一俱爆炸

及可燃性的气体。

所以单独配管且先经一密闭坚固的燃烧室(BurningBox),内通空气稀释

SiH4至可燃之浓度,令它先行燃烧后再经湿式洗涤塔处理后排出室外。

其反应方式为:

4.SiH4+2O2←SiO2(粉末)+2H2O

5.

其中

SiO2粉末须定期清洗,以免污染及堵塞管路系统。

另可采用

KOH水溶液做为循

环液系统,利用二者反应去除

SiH4

,反应式如下:

6.SiH4+2KOH+H2O

←K2SiO3+4H2

再经湿式洗涤塔处理后排出。

其它一些常用的毒性气体,如

AsH3,PH3,B2H6

亦可以此类化

学反应处理。

氟是人体必需的微量元素之一,饮用水适宜的氟质量浓度为~1mg/L。

当饮用水中氟含量

不足时,易患龋齿病;

但若长期饮用氟质量浓度高于1mg/L的水,则会引起氟斑牙病;

期饮用氟质量浓度为3~6mg/L的水会引起氟骨病。

我国含氟地下水分布广泛,尤其是在西

北干旱地区,约有7000万人饮用含氟量超标的水,导致不同程度的氟中毒。

工业上,含氟

矿石开采、金属冶炼、铝加工、焦炭、玻璃、电子、电镀、化肥、农药等行业排放的废水中

常含有高浓度的氟化物,造成环境污染。

对于这些含氟废水,目前国内大多数生产厂尚无完善的处理没施,所排放的废水中氟含

量指标尚未达到国家排放标准,严重污染着人类赖以生存的环境。

按照国家工业废水排放标

准,氟离子浓度应小于10mg/L;

对于饮用水,氟离子浓度要求在1mg/L以下。

含氟废水

的处理方法有多种,国内外常用的方法大致分为两类,即沉淀法和吸附法。

除这两类工艺外,

还有冷冻法、离子交换树脂除氟法、活性炭除氟法、超滤除氟法、电渗析,至今很少推广应

用于除氟工艺,主要是因为成本高、除氟率低。

本文对近年来国内外含氟水化学沉淀、絮凝

沉淀、吸附三种处理工艺的研究现状及工程应用进行综述。

1化学沉淀法

对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。

该工艺具有方法简单、处理方便、费用低等优点,但存在处理

后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

氟化钙在18℃时于水中的溶解度为mg/L,按氟离子计为mg/L,在此溶解度的氟化

钙会形成沉淀物。

氟的残留量为10~20mg/L时形成沉淀物的速度会减慢。

当水中含有一定

数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。

因此用石灰处理后

的废水中氟含量一般不会低于20~30mg/L。

石灰的价格便宜,但溶解度低,只能以乳状

液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用

量大。

投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15

mg/L左右,且水中悬浮物含量很高。

当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于

同离子效应而降低氟化钙的溶解度。

含氟废水中加入石灰与氯化钙的混合物,经中和澄清和

过滤后,pH为7~8时,废水中的总氟含量可降到10mg/L左右。

为使生成的沉淀物快速

聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂

(如三氯化铁

)或高分子混凝剂

(如聚丙烯酰胺

)。

为不破坏这种已形成的絮凝物,

搅拌操作宜缓慢进行,

生成的沉淀物可用

静止分离法进行固液分离。

在任何

pH下,氟离子的浓度随钙离子浓度的增大而减小。

在钙

离子过剩量小于40mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度

大于100mg/L时氟离子浓度随钙离子浓度变化缓慢。

因此,在用石灰沉淀法处理含氟废水

时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进

行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。

这也有利于减少处理后排放

的污泥量。

由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方

法。

例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。

这是因为废水中存在着一定量的强电解质,

产生盐效应,增加了氟化钙的溶解度,降低除氟

效果。

其有效的处理方法是先用无机酸将废水

pH调到6~8之间,再与氯化钙等反应就可有

效地除去氟离子。

若废水中含有磷酸根离子,则先用石灰处理至

pH大于7,再将沉淀物分

离出来。

对于成分复杂的含氟废水,可用加酸反调pH法,即首先在废水中加入过量的石灰,

使pH=11,当钙离子不足时补加氯化钙,搅拌

20min,然后加盐酸使废水

pH反调到

~8,

搅拌20min,加入絮凝剂,搅拌后放置

30min,然后底部排泥,上清液排放。

近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、

铝盐、磷酸盐等工艺,处理效果

比单纯加钙盐效果好。

如阎秀芝提出氯化钙与磷酸盐除氟法,

其工艺过程是:

先在废水中加

入氯化钙,调pH至~,反应h,然后加入磷酸盐,再调

pH为~,反应4~5h,最后静止

澄清4~5h,出水氟质量浓度为5mg/L左右。

钙盐、磷酸盐、氟三者的摩尔比大约为

(15~

20)∶2∶1。

文献中报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,

先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。

沉降15min后砂滤,出水氟离子浓度为4mg/L。

氯化钙、三氯化铝和氟的摩尔比为~

1)∶(2~∶1。

钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加,残氟浓度降低,主要

是因为形成了新的更难溶的含氟化合物,剩余污泥和运行费用仅为原来的1/10。

如钙盐与

磷酸盐合用时,会生成Ca5(PO4)3F沉淀;

氯化钙与三氯化铝合用时形成有钙、铝、氟组成

的络合物沉淀,其具体组成和结构尚待进一步研究。

利用化学沉淀法可以处理高浓度的含氟废水,氟离子初始浓度为

1000~3000mg/L

时,石灰

法处理后的最终浓度可达

20~30mg/L,该法操作简便,处理费用低。

但由于泥渣沉降速

度慢,需要添加氯化钙或其它絮凝剂,使沉淀加速。

设法提高钙离子浓度及保持高的

pH

使氟化钙沉降是降低氟离子浓度的主要途径。

另外,联合使用磷酸盐、镁盐、铝盐等,比单

纯用钙盐除氟效果好。

电子与半导体废水回用技术

2009-01-0516:

17:

15

针对巨大的应用机遇,半导体制造商在日常经营中,非常依赖于超纯水连续流。

由于全球水资源的日益缺乏,

因此超纯水的生产成本在不断地上升,如何做到节约成本,保护环境成了每个企业家注重的细节

针对巨大的应用机遇,半导体制造商在日常经营中,非常依赖于超纯水连续

流。

由于全球水资源的日益缺乏,因此超纯水的生产成本在不断地上升,如何

做到节约成本,保护环境成了每个企业家注重的细节。

溶解固体和悬浮固体在含量、酸碱度和金属杂质方面的差异,使半导体废水对常规技术处理造成了挑战。

经过膜生物反应器和三级处理系统,就可以对半导体废水进行处理,使之达到新的严格的环境规定或者在工厂内获得再次利用的机会,这样就造就了一个零废液的工厂。

膜系统是一种模块化系统;

废水处理能力可以快速调节,与产量增长保持一致。

这样,就可确保资本成本随时处于低水平。

系统特点?

※化学品需要量最小或为零;

※淤泥产出量低;

※臭气产出量低;

※能量需求量低;

※占地紧凑;

※现有基础设施改造的理想选择;

※抗冲击负荷;

※满足严格的废水品质要求;

※自动化操作。

某半导体有限公司废水处理方案

一、项目概述

某半导体有限公司位于某某市某某路,占地面积为万平方米,目前已建部分占地约三分之一,已建成并投产的为半导体器件“封装和测试”项目,生产的类型属于塑料封装器件,主要生产工艺流程为:

芯片整理切割绕线封装测试成品

生产过程中主要废水为清洗废水,并有一定量的倾槽废液,现针对上述生产废水、废液,提出本治理方案,请公司领导和上级主管部门审核,提出宝贵意见。

二、废水分类、水质、水量及处理目标

1.根据业主提供的有关资料及我司对其生产工艺的现场了解,并结合我司在同类型工程中积累的工程经验,

将产生废水分为清洗废水和倾槽废液,具体见下表:

序号

名称

水量

(m3/d)

COD

(mg/L)

BOD

SS

Cu

Ni

Pb

Sn

1.

清洗废水

350

1~8

3580

1290

450

80~100

3~5

840

3340

2.

倾槽废液

5

<

1或>

13

350000

5000

20000

2000

15000

60000

2.本项目经处理后与生活污水一起排入某污水处理厂,达到《污水综合排放标准》(GB8978-1996)三级

标准;

总镍和总铅需单独达标(生产废水),具体指标如下:

CODcr

BOD5

氨氮

总磷

石油类

6~9

500

300

400

35

8

20

三、设计依据及遵循的标准、规范

1.业主提供的数据和相关资料。

2.《污水综合排放标准》(GB8978-1996)中华人民共和国国家标准;

3.《室外排水工程规范》(GBJ14-87)中华人民共和国国家标准;

四、设计原则

本设计遵循如下原则进行工艺路线的选择及工艺参数的确定:

1.采用成熟、合理、先进的处理工艺。

2.废水处理具有适当的安全系数,各工艺参数的选择略有富余。

3.在满足工艺要求的条件下,尽量减少建设投资,降低运行费用。

4.处理设施具有较高的运行效率,以较为稳定可靠的处理手段完成工艺要求。

5.处理设施应有利于调节、控制、运行操作。

6.在设计中采用耐腐蚀设备及材料,以延长设施的使用寿命。

7.所有设计应满足国家相关专业设计规范和标准;

8.所有设备的供应安装应满足国家相关专业施工及安装技术规范;

9.所有工程及设备安装的验收及资料应满足国家相关专业验收技术规范和标准。

五、废水处理工艺的分析及确定

本废水处理工程拟采用新技术—高压脉冲电解床处理重金属离子废水。

我公司集多年工程经验开发研制的新一代“高压脉冲电解”技术,具有去除效率高,处理费用少,又便于操作等特点。

该项技术已在多家印染(棉、麻、化纤、毛)厂、垃圾填埋场成功运转,并取得较好的环境效益和经济效益。

用高压脉冲电解技术处理重金属离子废水有以下特点:

(1)重金属去除效率高,出水水质好;

(2)运行费用低,占地少,维护管理方便;

(3)常温下操作不受季节变化影响,启动快。

装置既可连续工作,也可间断运行;

(4)适应废水水质变化的能力强,当废水浓度变化时,调整电流、电压、波形等参数即可保证出水水质。

高压脉冲电解技术系电化学法,在进行废水处理时,借助外加电流的作用产生电化学反应,当脉冲电流经电极通过电解质溶液(废水)时,电解床的阳、阴二极间便产生电子迁移,从而引起以下电化学及化学反

应:

-

(1)氧化反应:

废水在惰性阳极产生OH放电而生成氧。

这是一种新生态氧,有较强的氧化能力,能对水

中无机物和有机物进行氧化。

(2)还原反应:

在电解的同时,在阴极的离子获得电子,形成氢,这种初生态氢有很强的还原作用。

(3)电气浮:

电解过程中,阳极和阴极表面不断产生氧气和氢气,并以微小气泡逸出,使废水中的有机胶体微粒、SS、油等经气浮予以分离。

(4)混凝作用:

采用可溶性金属(如低碳钢板)作阳极,电解中阳极金属发生溶解,以离子状态溶于水中,

经水解产生氢氧化物[如Fe(OH)3、Fe(OH)2

此类电解物质比同类化学产品有更强的活性,能产生强烈的混凝沉降作用。

重金属离子经高压脉冲电解装置处理后可达到排放要求。

六、工艺流程图(图略)

七、各处理设施说明及计算

1.倾槽废液贮槽

3

将倾槽废液收集于此,利用原有贮槽,大小尺寸为φ2500*3500mm,容积15m。

2.耐腐泵浦1

将废液提升至处理槽,选用耐酸碱泵浦SD40012L,流量:

5m/h,扬程:

12m,共两台,一用一备。

3.废液处理槽

将收集的废液在槽中进行预处理,投加Ca(OH)2,PFS,PAM,使大部分重金属离子形成氢氧化物共聚物。

池体大小为φ1500*3000mm,A3钢内FRP防腐,每次处理量为3m3。

内设PH计一套,其测程为0~14,电

压220V;

搅拌机一套,转速为50r/min,功率为;

配套PH控制电磁加药机3套,型号为:

日本尼可尼AHA41,

流量为150l/h。

4.气动隔膜泵

将废液处理槽中形成的泥水混合物泵入污泥池,选用英格索兰的气动隔膜泵,型号为:

66605J-344,共两

台,一用一备。

5.污泥池

污泥池用来存放处理过程中形成的污泥和浮渣,

利用原有污泥槽,大小尺寸为φ2000*3500mm,容积10m。

6.气动隔膜泵

将污泥池泥渣泵入压滤机脱水,选用英格索兰的气动隔膜泵,型号为:

666172-322-C,共两台,一用一备。

7.压滤机

泥、渣在此进行脱水处理,处理后泥饼外运处置,滤液回调节池。

利用原有压滤机,过滤量为130GPM。

8.清洗水调节池

清洗水调节池用来贮放生产过程中产生的清洗废水,和经过预处理的废液,

池体大小30m,采用PE材质水

箱。

9.耐腐泵浦2

将废水提升至高压脉冲电凝装置,选用耐酸碱泵浦SD50032L,流量:

15m/h,扬程:

13m,共两台,一用一

备。

10.高压脉冲电凝装置

池体尺寸长×

宽×

高分别为4000*2000*3500mm,采用PP材质,附控制电源系统一套。

11.胶凝反应槽1

高分别为1500*1500*2500mm,设计反应时间为20min,池体有效容积为5m,采用A3钢结

构,池体内衬FRP。

内设PH计一套,其测程为0~14,电压220V;

搅拌机一套,转速为12r/min,功率为;

配套PH控制电磁

加药机两套,型号为:

日本尼可尼AHA41,流量为150l/h。

12.沉淀池1

用于废水的固液分离。

采用斜板沉淀池,池体尺寸长×

高分别为4000*2200*4500mm,设计沉淀区表面

负荷为,沉淀时间为小时。

池体采用A3钢结构,内衬FRP;

内设PP斜板,板间距为150mm;

出水采用UPVC锯齿溢流堰。

13.混合反应槽

高分别为1500*1500*1500mm,设计反应时间为12min,池体有效容积为3m,采用A3钢结

搅拌机一套,转速为86r/min,功率为;

14.胶凝反应槽2

高分别为1500*1500*2500mm,设计反应时间为20min,池体有效容积为5m,采用A3钢结构,池体内衬FRP。

内设搅拌机一套,转速为12r/min,功率为;

配套PH控制电磁加药机一套,型号为:

15.沉淀池2

16.膜生物反应器

采用进口高级中空纤维膜,集废水生化、沉淀、过滤与一体,拥有较高的微生物浓度,搞冲击负荷能力强,

出水质量稳定。

池体大小5000*3000*4000mm,净容积60m3,停留时间为4小时。

17.排放取样计量池

对处理后的达标废水进行采样分析及计量,取样排放池A3钢结构,内衬FRP防腐。

池体大小为5000×

800×

800mm,采用PSL-2号槽,附超电脑声波流量计。

八、售后服务

我公司从设计、施工、设备制造、安装、调试、培训和配合验收一条龙服务,工程质量达到优良,设备制造符合国家标准,标准设备选用先进中外合资产品。

本公司宗旨:

以一流的技术,一流的质量,一流的服务,并对产品实行三包,保证用户满意。

本工程在一年内发现质量问题由我公司免费负责维修(人为因素除外),并长期负责维修。

如发现问题我司工程师在

24小时内到达现场解决问题。

九、甲方自备部分

1.废水引入调节池;

2.排放水自排放槽接至管网;

3.一次侧电源接至控制箱;

4.自来水接至废水处理区域;

5.6kg/cm2的气源接至污泥系统;

6.施工时提供水、电等配套设施。

7.调试期间的药剂及相关

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1