反比例函数的综合题.docx
《反比例函数的综合题.docx》由会员分享,可在线阅读,更多相关《反比例函数的综合题.docx(10页珍藏版)》请在冰豆网上搜索。
反比例函数的综合题
1.如图所示,已知
,B(2,y2)为反比例函数
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.
B.
C.
D.
图1
图2
图3
2.如图2,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数
(x>0)的图象与△ABC有公共点,则k的取值范围是( )
A.2≤k≤9
B.2≤k≤8
C.2≤k≤5
D.5≤k≤8
3.如图3,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数
的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.
其中正确的结论是( )
A.①②
B.①②③
C.①②③④
D.②③④
4,如图,双曲线
经过点A(2,2)与点B(4,m),则△AOB的面积为( )
A.2
B.3
C.4
D.5
5.如图,点P是双曲线
(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线
(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1。
(用含k1、k2的式子表示)
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?
若有,求出其最小值;若没有,请说明理由.
6.(2009•绥化)直线
与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当
时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
7.(2007•益阳)如图1,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成的面积为Y,点P运动的路程为X,请解答下列问题:
(1)当x=1时,求y的值;
(2)就下列各种情况,求y与x之间的函数关系式:
①0≤x≤4;②4<x≤8③8<x≤12;
(3)在给出的直角坐标系(图2)中,画出
(2)中函数的图象.
8.(2009•邵阳)如图,直线l的解析式为y=-x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1;
(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;
①当2<t≤4时,试探究S2与之间的函数关系;
②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的
?
9.(2007•台州)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠
.
(1)判断△OCD与△ADE是否相似?
请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?
如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
10.如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:
2,并求出此时直线PQ的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
11.(2010•密云县)附加题:
已知:
如图,正比例函数y=ax的图象与反比例函数
的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
12.(2008•湖州)已知:
在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数
(k>0)的图象与AC边交于点E.
(1)求证:
△AOE与△BOF的面积相等;
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:
是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?
若存在,求出点F的坐标;若不存在,请说明理由.
13.(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?
如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
14.(2006•大连)如图,直线y=k和双曲线
相交于点P,过P点作PA0垂直x轴,垂足为A0,x轴上的点A0、A1、A2、…An的横坐标是连续的整数,过点A1、A2、…An分别作x轴的垂线,与双曲线
(x>0)及直线y=k分别交于点B1、B2、…Bn,C1、C2、…Cn.
(1)求A0点坐标;
(2)求
及
的值;(3)试猜想
的值。
15.已知一次函数y=kx+b与双曲线
在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4.
(1)求一次函数的解析式;
(2)根据图象指出不等式
的解集;
(3)点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围.
16.(2008•莱芜)
(1)探究新知:
如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:
MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.