UntitledFR11doc文档格式.docx
《UntitledFR11doc文档格式.docx》由会员分享,可在线阅读,更多相关《UntitledFR11doc文档格式.docx(22页珍藏版)》请在冰豆网上搜索。
aInstituteofIntelligentEngineeringandMathematics,LiaoningTechnicalUniversity,FuxinCity,
LiaoningProvincef123000,China;
bCentreofNewEnergySystems,DeptofElectrical,ElectronicandComputerEngineering,Universityof
Pretoria,Pretoria0002,SouthAfrica
(Received00Month20XX;
finalversionreceived00Month20XX)
Inthepaper,atypicalcoaltradeprocessisdescribedandmodelled,whereonelogisticsenterprisewithblendingequipmentsliesinthecoreandtwotypesofcommoncontractsareelucidatedtodefineconstraints.Amixed-integermodelisbuiltandfeaturedbyaddressingcontractviolation,blendingoperation,realtimepriceinformationandarbitrarilydistributedstochasticdemands.Todealwiththestochasticdemands,probabilisticconstraintsareformed.Accordingly,stochasticmodelpredictivecontrol(SM-PC)strategywithbothrecedinghorizonanddecreasinghorizonformulationsisdevelopedtohandletheprobabilisticconstraintsandexploitthevalueofnewestpriceinformation.Bysolvingaseriesofmixed-integerlinearprograms,optimalcoaltradedecisionsforthelogisticsenterprisecanbeobtained,includingprocurementdecision,sellingdecisionandoperationaldecisionoftheblendingequipments.
Thoroughsimulationexperimentsarecarriedoutandcomparedunderthreedifferentstrategies,whichinterprettheeffectivenessoftheproposedstrategy.
Keywords:
coaltradedecisions;
stochasticdemands;
blendingoperation;
stochasticmodelpredictivecontrol
1.Introduction
Coalisonemajorsourcefortotalenergysupplyintheworld.Thepercentageofcoalamongallfuelsis19.5%in2012,followingafteroilwiththepercentageof36.1%(accordingtodatafromInternationalEnergyAgency;
IEA2013).Andcoaltakesupthelargestpartinelectricitygeneration,theratioofwhichis41.3%in2011.Coaltradebothintheinternationalmarketanddomesticmarketisveryactive.Forexample,coalproductionandnetimportsforChinareadied3,549Mt(milliontonnes)and278Mtrespectivelyin2012.
Coaltradeprocessusuallyinvolvesthreesides,namelycoalsuppliers,logisticsenterprisesandcoaJconsumers,amongwhichtheroleoflogisticsenterprisesisbecomingmoreandmorepredominant.Generally,thelogisticsenterpriseisinchargeofsearchingfordemandsfromdifferentconsumerssuchaspowercompanies,cementcompaniesandsteelcompanies,andthenformulatingasetofcoaltradedecisions,includingprocuringcoalsfromsuppliers,transportingcoalsandblendingdifferenttypesofcoalstorenderthemsuitablefordifferentplants.Coalblendingisdesiredbymoreconsumersatthecurrentmoment,sincetherearemoreandmorestringentenvironmentalregulationswhichrequirethatcontentsofsomeelements/attributesofcoalsshouldbewithincertainupperorlowerlimits.Moreover,differentburningplantsmayhavedifferentpreferencesoncoalqualities.Forexample,thesulfuroxidecontentofcoalstoentertheburningplantsofpowercompaniescannotbegreaterthan0.7%acrossGuangdongProvinceofChinasince2014.Tomeetthisregulation,differentcoalswithsulfuroxidecontentaboveandbelow0.7%canbe
•CorrfapomjiiigautlidEmail:
chengqifeng^t«
mixedtogetherthroughtheblendingequipments,otherwisetoonlyconsidercoalswithsulfuroxidecontentbelow0.7%canbeveryexpensiveduetoinsufficientsupplyinthemarket.Nowadays,manyconsumersonlyproposetheirrequirementstothelogisticsenterpriseandallthejobsareduetotheresponsibilityofthelogisticsenterprise.Thus,blendingcapabilityisonekeyrolethatthelogisticsenterprisecanplay.Thispaperwillfocusonthemodellingandoptimizationforatypicalcoaltradeproblem,whereonelogisticsenterpriseequippedwithblendingfacilitiesliesinthecoreofthetradeprocess.Ascanbeexpected,thisresearchwillexploremoreprofitsforthelogisticsenterprise.Moresignificantly,optimizingcoaltradedecisionscanbringmanybenefitstothewholetradesystem,suchasincreasingthecirculationandblendingofcoalstomeetvariousdemands,reducingcostsforconsumers,storingcoalsasabuffertodealwithpossibleemergencieswhichmaythreatenthesupplymarket.
Littleresearchhasbeendoneonthistypeofcoaltradeoptimization,whichincorporatescontractviolation,blendingoperation,newestinformationonpriceforecastandstochasticnatureofdemands.Inthispaper,weextendpreviousresearchforthefollowingfouraspects:
1)Theresearchiscarriedoutfromtheviewofthelogisticsenterprise,whichlocatesatthecoreofcoaltradeprocess.Asstatedabove,shapingoptimaldecisionswillmakethewholetradeprocessmoreefficient.2)Thestochasticpropertiesofdemandsinthefuturearetakenintoaccountexplicitly,whereaseriesofprobabilisticconstraintsareformulated.3)Theproblemofsatisfactionorbreachofthetradecontractisaddressedinthemodellingandoptimization.4)Stochasticmodelpredictivecontrolstrategy,withbothrecedinghorizonanddecreasinghorizonformulations,isdevisedtoachieveoptimalperformance.
Thepaperisproceededasfollows.Relatedliteratureisreviewedin§
2.Thedetailsofmodelling,
1.e.,assumptions,objectiveformulationandvariousconstraints,arepresentedin§
3.In§
4,stochasticmodelpredictivecontrolstrategyisdeveloped.Anillustrativeexampleisstudiedthoroughlyin§
5andweconcludethepaperin§
6.
2.LiteratureReview
Thisresearchisinconnectionwiththreetypesofproblemsinexistingliteratures,i.e.,coallogisticsoptimization,commoditytradeproblemandsupplychainoptimization.Theconnectionsanddifferencesaresetforthbelow.
2.1CoalLogisticsOptimization
Coalblindinganddistributionproblemhasdrawnalotofattentions,whichcanbefoundin(SheraliandPuri1993;
ShihandFrey1995;
Cao,Lin,andYan2006;
Liu2008;
Yabin2010;
Yucekaya2013,andreferencestherein).CoalblendingcostisminimisedinShihandFrey(1995)byincorporatingtheuncertaintyofcoalelements/attributes.AtotalcostofthelogisticssystemistakenintoaccountinCao,Lin,andYan(2006),includingrailwaytransportationcost,procurementcost,orderingcostandholdingcost.TheblendingissueistreatedaswellinCao,Lin,andYan(2006),however,itdoesnottakeintoaccountthestochasticvariationofbothpriceanddemands.InLiu(2008),theblendingandinter-modaltransportationproblemissufficientlyaddressed,yetneitherdemandvariationnorpriceupdateisaccountedfor.ThepricechangeforprocurementandtransportationanddemandchangehavebeenaccommodatedintheoptimizationproblemofYabin(2010),whileitassumesthatbothpricechangeanddemandchangearefixed,whichisnotrealisticbyneglectingthestochasticnatureofthesechanges.Amulti-objectiveoptimization,consideringmultiplesuppliers,multipleroutes,multipleproductsandthecoalqualityconstraints,isformulatedinYucekaya(2013),yetwithouttreatmentofthepriceanddemandvariation.
Ourresearchdifferentiatessignificantlyfromtheliteraturesaboveintwopoints.Firstly,wenotonlyconsiderthequalityrequirementsbyblendingdifferenttypesofcoals,butmorespecifically,weoptimizetheoperationaldecisionsofblendingequipmentsforthelogisticsenterprise.Tothebestknowledgeofus,thisproblemhasnotbeenhandledbefore.Secondly,wemakeuseoftheinformationonthestochasticdistributionsofdemandsexplicitly,whereprobabilisticconstraintsareposedandtreated.Realtimeinformationonpriceforecastisalsoincorporatedinourmodel,whichisfacilitatedbythestochasticmodelpredictivecontrolstrategy.
2.2CommodityTradeProblem
Thereareabundantliteraturesoncommoditytradeproblem,suchasBerlingandMartmez-deAl-beniz(2011);
Xie,Park,andZheng(2013),andtheirreferences.InBerlingandMartfnez-deAlbania(2011),aninventorycontrolmodelforspotmarketprocurementisdevisedbytakingbothpurchasepriceanddemandtobestochastic.Itinvestigatesaone-factorpricemodel,andassumesthatthearrivalprocessofdemandisPoisson,whichisstochasticandlimited.Thereplenishmentcapacityisregardedasinfinite.AcrudeoilprocurementstrategyforChineseoilrefineriesisdevelopedinXie,Park,andZheng(2013),withdeterministicdemandsandindependentuncertainpurchaseprices.ABayesianlearningmethodisutilizedtoactivelyassimilaterealtimepriceinformation.Inthecoaltradeprocesswiththelogisticsenterprise,contractsgenerallyexisttoensuredemandpredictionsmoreaccurateandtheprocurementplanningmorerealistic,thusneitherreplenishmentnordemandcanbeinfinite.Moreover,therearephysicalconstraintsonthestoragecapacityandblendingcapacity,andthetradeprocessconcernsblendingofmultipleproducts(coals),whichbothcomplicatetheproblem.Modelpredictivecontrolisemployedinourstudytomakeuseofthenewestinformationregardingpriceanddemand,whichhasacertaindegreeofinherentrobustnessagainstexternaldisturbances,modeluncertaintyandmodelmismatch(Maciejowski2002;
vanStaden,Zhang,andXia20li).
2.3SupplyChainOptimization
Variouscontrolstrategieshavebeensuccessfullyappliedinsupplychainoptimizationproblem,e.g.,Perea-L6pez,Ydstie,andGrossmann(2003);
SeferlisandGiannelos(2004);
Alessandri,Gag-gero,andTonelli(2011);
Sarimveisetal.(2008).InPerea-Lopez,Ydstie,andGrossmann(2003);
Alessandri,Gaggero,andTonelli(2011),themodelpredictiveco