Challenging Perfect Number.docx
《Challenging Perfect Number.docx》由会员分享,可在线阅读,更多相关《Challenging Perfect Number.docx(4页珍藏版)》请在冰豆网上搜索。
ChallengingPerfectNumber
ChallengingPerfectNumber
PassageandpicturesbyHuangHongtaowhoisthepost-doctoratefromUniversitàdiRomaLaSapienzaanddoesresearchesoncomputationalmathematics
OnJanuary7thisyear,amathematiciannamedCooperfromtheUniversityofCentralMissouriCooper,throughtheprojectcalledInternetMersennePrimeSearch(GIMPS),foundthelargestknownperfectnumber2^74,207,280(2^74207281-1)whichmeansthatafter74,207,281thpowerof2minus1andthenmultipliedby2tothepowerof74,207,280(NOTE:
^isthecomputerlanguagepowersymbol).Thisnumberisthe49thperfectnumberhumandiscoveredduringthepast2500yearsandithas44,677,235digits;ifitwereprintedintheordinarysize,thelengthwillbe200km!
Readerscanimaginemoreaboutit......Eventhewell-knownAustralianmathematicianParkeragreesthatthisisatremendousscientificachievement.Well,willitbeanexplorativestorysimilartotheclassicmovieGoodWillHunting?
Whatkindofcharmonearthdoestheperfectnumberboast,attractingsomanymathematiciansonafteranothertodevotethemselves?
WhatisPerfectNumber?
PerfectnumberhassomeothernamesinChinesewhosedefinitionisthatthesumofallfactorsexceptitselfequalsthenumberitself.Thisdefinitionseemstobeconfusing,solet’scitetwoexamples,thetwosmallestperfectnumbersare6whoseallfactorsare1,2,3,6and28whoseallfactorsare1,2,4,7,14,28),bothofwhicharethesumoftheirallfactorsinadditiontoitself:
6=1+2+3and28+1=2+4+7+14.Duetosomecommonmagicalproperties,scientistsentitlethemwithawonderfulnamecalledtheperfectnumber.
Forthousandyears,theintriguingpropertiesandincomparablecharmoftheperfectnumberhasattractedmanymathematiciansandcountlessmathematicamateurstoexploreit.In17thcentury,FrenchmathematicianandphilosopherDescartespubliclypredicted,“Thenumberoftheperfectnumberwillnotbelarge,justlikeit’snoteasytofindaperfectperson."Afteralongperiodoftime,peopleonlyfind49perfectnumbers.Thisnumberofrareyetbeautifulwhichisknownasthe"diamondsintreasurehouseofnumbertheory."
DiscoveryofMersennePrime
Later,thestructureof2P-1usingforfindingtheperfectnumberwasnamedasMersennePrimeinthemathematicalfield.ItwasnamedafterMersennewhoisaFrenchmathematicianbecausehissystematicanddeepresearchintothisspecialprime.Interestingly,the"superprimes"foundinthepastcenturyarealmostMersenneprimes. Mersenneprimeseemstobesimplebutactuallyit’shardtoexplore.Itrequiresnotonlyprofoundtheoriesandskillfultechniques,butalsocomplicatedcalculationsandgreatamountofcomputation.In1772whenEulerwasblind,hestillproved231-1(ie2147483647)tobetheeighthMersenneprimebymentalarithmetic.Thisprimewith10digitswasthelargestknownprimenumberatthattime.Theeighthperfectnumber--230(231-1)alsoemergedwhichwaslikelytobethebiggestperfectnumberpeoplefoundatthatmoment.Euler'sperseveranceandproblem-solvingskillswereimpressive.WhatFrenchmathematicianLaplacesaysmaybecanrepresentourvoice:
"ReadEuler’swritings.Heistheteacherofeveryoneofus."
Againstthebackdropwhereallthecalculationsandrecordmustbewrittendownbyhands,nomatterhowhardpeopletried,theyfoundonly12Mersenneprimes,thatistosay,only12perfectnumberswerediscovered.However,thebirthofcomputersgreatlyacceleratedtheprocessofresearchintoMersenneprimes.Forexample,in1952,theAmericanmathematicianRobinsoncompiled"Lucas-Lehmertest"intoacomputerprogram.ByusingtheSWACcomputerinafewmonths,theyfoundfiveMersenneprimes:
2521-1,2607-1,21279-1,22203-1and22281-1.
ExplorationintoMersenneprimeisnotonlychallenging.Fortheexplorers,theycanobtainasenseofpride.Perhapsthisiswhytherearecountlessmathematicianswillingtodevotethemselvesintoit.At20:
00onJune2,1963,whenthefirst23rdMersenneprime211213-1wasfoundbylargecomputer,theAmericanBroadcastingCorporation(ABC)interrupteditsregularbroadcastandtimelypublishedthisimportantmessage.AllthestudentsandfacultiesfromtheDepartmentofMathematics,UniversityofIllinoisstaffwhofoundtheprimewereveryproudandatthesametime,inordertolettheworldtosharethisgreatachievement,alltheenvelopessentfromthedepartmentarecoveredwitha"211213-1isaprimenumber"postmark,whichwasverycrazyandfantastic.
WiththeincreaseoftheindexP,thediscoveryofeveryMersenneprimeencounterstremendoushardships.However,theprofessionalmathematiciansandamateurmathematicsloverswerenottiredofthisandeventriedtotakethelead.OnFebruary23,1979,whenVinskiandNelsonwhoarethecomputerexp