Φ1200熟料圆锥式破碎机Word文档格式.docx
《Φ1200熟料圆锥式破碎机Word文档格式.docx》由会员分享,可在线阅读,更多相关《Φ1200熟料圆锥式破碎机Word文档格式.docx(16页珍藏版)》请在冰豆网上搜索。
同时,入磨粒度的大小是影响磨机产量的主要因素。
若入磨物料粒度较大,磨机第一仓必须加入较多的大球才能击碎物料,这样磨机的第一仓在一定的程度上起着破碎作用。
这在粉磨中是极不合理的。
入磨粒度越大,磨机产量越低,电能消耗越大,磨机产量与入磨物料粒度的四次方根成反比。
给料粒度越小,磨机产量越高,能源消耗下降;
反之,产量降低,能耗提高。
下面就2003年水泥市场进行展望和分析
一、2003年水泥总量需求分析
1、国家的宏观经济政策有利于水泥总需求量保持稳定
水泥工业的增长速度与国民经济的增长速度密切相关,2003年是”十六”大召开后的第一年,按照”十六大”制定的奋斗目标,到2020年要实现国内生产总值比2000年翻两番的要求,这就意味着在这20年中我国的国民经济发展速度必须达到年均递增7.8%,如果2003年国际经济政治环境不发生重大影响的突发事件,国内不出现大范围的严重自然灾害和其他重大的问题,GDP增长率仍可以保持在7%以上的水平.建国50多年来的统计资料表明,当GDP的增长速度高于9%时,水泥工业的发展速度大于9%;
当GDP的增长速度低于4.2%时,水泥工业就会出现零增长或负增长.根据此规律,从总的趋势来讲2003年我国水泥的总需求量应呈增长态势.另外,据权威人士表示,中国水泥将继续实施积极的财政政策,直到经济形成自身良性循环的发展的动力,积极的财政政策对水泥总需求量稳定在2002年的水平非常有利.
2、房地产投资相对减少,水泥需求量下降
据2002年国家统计局的统计数字表明:
全国房地产投资2002年的增长率和销售价格增长率都低于投资开发增长率,部分地区市场有过热苗头.预计2003年与水泥需求密切相关的房地产业投资会由2002年30%的增长速度,大幅回落到15%.因此,从全国范围看,2003年房地产业水泥需求量呈下降趋势.
3、混凝土的技术进步及商品混凝土的普及,使2003年水泥总需求量相对减少
4、世界经济不景气,水泥出口形势不容乐观
总之,2003年国家基本建设投资将继续保持较高速增长,由此推论,水泥的总需求量应较2002年有所增长.但考虑到房地产增长速度放缓,混凝土技术进步的加快,以及水泥出口受国际形式的影响,有利条件和不利条件相抵,2003年水泥总需求量应保持在2002年的水平.
二、2003年水泥总供给特点及分析
1、水泥供给总量难于降低
2002年我国水泥总产量,月报数为7.05亿吨,公报数为7.25亿吨,综合统计年报在7.4亿吨左右.2003年受经济快速增长拉动,小水泥的技术进步会进一步加快,台时产量明显提高;
新型干法水泥在2002年新增了3000万吨能力的基础上,2003年预计新增能力在4000万吨以上.因此,水泥总供给量仍呈增长趋势,供大于求的状况有增无减.
2、国家会加大水泥调整力度,加快不符合国家产业政策小水泥的淘汰进程
国务院142次总理办公会要求水泥与钢铁行业尽快制定整顿与发展规划.总理亲自关注水泥发展规划还是第一次.相信在中央领导的亲自关注下,2003年我国会加快水泥工业结构调整力度,那些不符合国家产业政策的小水泥企业淘汰进程将加快,水泥供给总量急剧增长的势头会得到有效缓解.
3、供大于求的状况会使水泥的价格进一步走低
水泥总供给大于总需求量的状况在2003年会有扩大趋势,市场竞争将进一步加剧,由于水泥行业退出成本很高,行业内过剩能力无法释放,在价格大于变动成本的情况下,企业不会主动减产,无疑会加大水泥市场的竞争局面,这决定了2003年水泥价格将继续会走低.
4、大型水泥集团2003年将进一步急剧扩张,在部分地区形成市场垄断局面
随着我国新型干法水泥生产技术日趋成熟,水泥吨投资不断下降.为了降低成本,大集团利用自己技术、资金优势不断扩张.2002年海螺集团生产能力达到了2115万吨,比2001年翻了一番,2003年还将大幅增长.山水集团2002年比2001年增加了226完2吨,华新集团、新疆天山集团、渤海集团、吉林亚泰集团2002年生产能力均有大幅增长,2003年将仍将继续膨胀.这些大型水泥集团的急剧膨胀使其在所辖地域已具备了规模优势、成本优势和资源优势,对水泥市场具备了一定的控制能力,地区市场垄断局面已初步形成.
1圆锥式破碎机的总体设计
1.1机器设计的要求
机器的种类虽然很多,但设计时的基本要求往往是共同的,根据对现有机器的分析,现代机器的设计应满足下列三大要求:
一、经济性要求
机器的经济性必须体现并贯穿在其设计、制造和使用的全过程中。
体现在设计阶段是指应用先进的设计方法,将三钟传动(机械、电子、液压)有机地匹配,各得其所。
此外尽量采用标准件、通用件和使用产品系列化而缩短设计周期;
体现在制造过程中是指使用无切削加工等各种新的制造工艺技术,提高工效、缩短制造周期等;
体现在使用方面是指消耗(水、电、油及辅助材料等)少、管理和维修费用低等。
二、社会要求
机器应有好的社会效果,表现为;
应满足人机工程学的要求,如操作方便、省力、舒适劳动强度低、维修简捷等;
应符合安全运行要求,如设置可靠的安全防护装置,设置能排除误操作的连锁装置,采用安全联轴器和离合器,配备各类预警信号装置等;
应满足工艺美术要求,如造型精巧、线形流畅、形体简练、色彩明快等;
应符合环保要求,如控制噪声、有效地排除废气、废液等,以免造成环境污染
某厂设计能力为10万t,机立窑为Φ3m×
11m,闭路磨机为Φ2.2m×
7.5m。
近10年来,该厂曾使用过3种水泥熟料破碎机。
1996年前用的是250mm×
1000mm的细颚式破碎机,1996年9月曾经试用过800型的高效柱磨机,1997年底又购置了600mm×
800mm的锤式破碎机。
根据该厂使用情况及考察情况分析:
由于水泥熟料自身的高强度、强磨蚀性,在粉碎过程中对锤头、板锤、反击板及挤压辊产生剧烈的磨损,而致使耐磨件使用寿命短。
在考察中了解到由长沙江背水泥熟料细碎机械厂研制的细碎机有它独特性能:
①转速超慢,几乎无振动;
②功耗费用极低;
③粒度长期稳定;
④维修配件方便。
1.2圆锥式破碎机的工作原理
该熟料细碎机的结构如图1所示。
图1
圆锥式熟料细碎机结构示意图
该圆锥式破碎机,在上盖板上固定安装一减速电机,减速电机与小齿轮相连,然后通过小齿轮带动大齿轮转动,大齿轮与回转筒相连.物料由进料装置进入空心轴,当物料填满轴上端部分时,顺着分级罩向下滑动,符合尺寸要求的小块物料则通过分级罩上篦板孔,大块物料进入定动颚板之间的破碎腔,进行破碎.由大颗粒变成小颗粒或粉末而垂直落入漏斗入口,从漏斗出口排出。
1.3圆锥式破碎机的设计构思
1.3.1锤头线速度的确定
在2台不同转速的CXP900×
600细碎机上安装同样形状,同样材质的锤头,对比试验锤头的线速度与锤头的使用寿命之间的关系。
当转速960r/min时,锤头线速度45m/s,破碎立窑熟料1副锤头寿命在3500~4000t,出料粒度<
5mm,锤头纯磨耗约8g/t。
当转速610r/min时,锤头线速度28.8m/s,破碎立窑熟料1副锤头寿命在6500~7500t,出料粒度<
8mm,锤头纯磨耗约4g/t。
上述结果表明:
锤头线速度愈高,磨损就愈大。
我们遵循这个规律,设计细碎机的工作线速度为0.45m/s左右,转速定在2.7~8.7r/min,是国内其它细碎机工作线速度的1/120~1/100,采用超慢线速度,对机器的耐用、振动、功耗、环保,特别是对选用耐磨材料创造了有利条件。
1.3.2耐磨件材质的确定
从耐磨材料磨损机理分析,当耐磨件的硬度低于熟料的硬度时,磨损速度就很快,反之就耐磨得多。
如果锤头的材质韧性不足,则会在熟料的高速冲击下,产生凿削剥落或疲劳剥落,磨损速度也会加快。
更重要的是韧性不足,容易断裂。
由于硬度愈高,其韧性相对就愈低,所以高硬度的耐磨件很难用于高线速度及冲击力大的破碎机。
立窑熟料硬度一般是HRC50~52,回转窑熟料硬度是HRC52~54,为此破碎熟料的耐磨件硬度必须达到HRC58以上,才能达到良好的耐磨性。
采用超慢速剪切细碎原理的细碎机,工作中冲击力小得多,工作摩擦热少得多,可选用高硬度的耐磨材料。
1.3.3篦板的确定
设计有篦板的破碎机都有堵料、积料现象,对锤头磨损影响很大,必须定期清除,增加检修工作量。
Φ1200熟料圆锥式破碎机设计的篦板是由若干块扇形板组合成1个圆锥筛体,大头固定在旋转筒外壁上。
物料由进料筒垂直落向回转体,均匀地撒向旋转的分级罩上,通不过篦缝的大颗粒物料有锥形分级罩均匀地撒入动态的V形圆环破碎腔内煎切细碎,克服了堵料、积料所带来的挤压、摩擦耗功大的弊端。
1.3.4熟料、矿渣影响因素
熟料的性质也影响耐磨件的使用寿命。
窑外分解窑的熟料比干法中空窑的熟料易碎,立窑的熟料差异较大,有时比回转窑还难破碎。
熟料的温度对耐磨件的磨损有一定影响,如果材质在400℃左右可保持硬度韧性不变,是能适应熟料破碎的。
但高线速度的破碎机与高温熟料的高速冲击摩擦,估测局部温度达到800℃以上。
而熟料圆锥式破碎机产生的工作摩擦热就少得多,对一般低于300℃的水泥熟料细碎都能长期适应。
矿渣均为小颗粒,按理说不需要破碎即可通过篦缝漏出。
有几家厂使用却发现,掺40%矿渣的混合料反而比掺15%的对锤头磨损更大。
经分析是小颗粒矿渣越多在破碎腔溜出篦缝的速度越慢,远远低于锤头的工作线速度,受到无数次重复锤击,加快了耐磨件的磨损
1.4圆锥式破碎机的使用和效果
1.4.1设备型号规格
2000年1月我厂购买了1台Φ1200熟料圆锥式破碎机,其规格性能见表1。
表1
Φ1200熟料圆锥式细碎机的规格与性能
最大进料尺寸/mm
平均出料粒度/mm
台时产量/(t/h)
线速/(m/s)
转筒转速/(r/min)
电动机功率/kW
磨损后最大出磨物料
易损件使用寿命/d
易损件消耗/(元/t)
系统总电耗/(kWh/t)
1副剪板碎料/万t
1副剪板价格/万元
粒度/mm
比例/%
140
5
22~32
0.37
5.90
15
12~15
20
210
0.077
25.7
11.0
0.70
1.4.2入磨粒度
和圆锥式熟料细碎机相比锤式破碎机在需要更换锤头及篦板的前期,约有15%的破碎物料粒度超过25mm,更换锤头后物料粒度又小了,粉状料很多。
由于国内的粉碎设备大都是采用高线速度运转,粉碎水泥熟料极不耐用,更换和调整粒度装置的次数频繁,一般2~8d必须调整或更换(慢速除外),致使入磨物料粒度形成周期性的不稳定。
该机于2000年2月底正式投入运行,细碎效果满意。
立窑熟料出窑后通过新增设1台7m高的提升机送入熟料细碎机,细碎后再由原链板运输机送至熟料圆库。
拆掉了原安装的锤式破碎机,混合材因粒度很小,不需要细碎,直接配入熟料圆库,入磨物料粒度分布对比见表2。
表2
3种设备细碎熟料的入磨粒度分布对比
%
粒径/mm
50~70
30~50
20~30
15~20
10~15
5~10
2~5
<
2
250×
1000细颚破
15.0
10.0
5.0
30.0
600×
800锤式破
10.1
5.5
9.4
39.8
30.2
φ1200熟料圆锥式破碎机
19.6
15.3
39.2
25.9
1.4.3钢球级配的优化调整
根据使用效果,该超慢速细碎机功耗低,电流只有16A,无扬尘,运转平稳,且耐用,入磨粒度小,其主要特点是粒度分布窄而稳定,为磨机球段级配创造了良好条件。
在刚使用3个月中,我们对磨机球段级配调整过3次,取得了一种满意的级配方案,其主要参数依据如下:
①钢球级配分为4级,每级直径差为10mm。
②每级球径D是根据入磨物料每类最大粒径d来确定,计算公式为D=28
。
③每级钢球配比重量是根据入磨物料粒度分布特性和研磨体在磨内作功的规律性及钢球的耐磨性来确定的。
级配方案见表3。
表3
3种设备破碎熟料磨机研磨体级配方案对比t
规格、名称
钢球/mm
钢段/mm
总重量
Φ100
Φ90
Φ80
Φ70
Φ60
Φ50
Φ40
Φ35×
42
Φ30×
37
Φ25×
32
Φ20×
27
1000细颚式破碎机
1.0
1.7
3.7
3.1
2.5
7.0
8.0
34.0
800锤式破碎机
3.2
2.7
2.0
4.2
7.7
6.5
3.8
34.2
Φ1200熟料圆锥式细碎机
2.2
4.0
34.7
注:
2001年5月的数据系实施ISO标准后的数据。
1.4.4使用效果
采用JSP1200超慢速剪式水泥熟料细碎机后,我厂重点对磨机的球段进行了优化调整试验,改造前后有关统计数据对比见表4。
表4
使用3种设备破碎熟料的水泥磨机产量、消耗及水泥强度对比
时间
水泥产量/万t
磨机台时产量/(t/h)
系统电耗/(kWh/t)
细碎机配件费/(元/t)
机械运转率/%
控制细度(0.08mm筛余)/%
3d强度/MPa
28d强度/MPa
抗折
抗压
1996-01~12
9.2
11.64
42.09
0.106
97.0
6±
4.3
24.5
6.7
50.1
1998-01~12
12.2
15.82
32.11
0.651
82.0
5±
4.6
25.2
6.9
51.2
2000-03~2001-03
14.2
19.27
24.28
0.078
99.9
4.5
26.5
6.8
51.7
2001-05
JSP1200超慢速细碎机
1.02
16.22
28.85
100.0
2±
21.7
6.6
46.9
改造后球磨机台时产量提高了22%。
破碎机配件费用1年节约了6.82万元,1年来节约电费50万元。
特别是新标准实施后,我厂提高水泥成品细度通过5月份检验分析完全达到新标准要求,增强了市场竞争能力。
2圆锥式破碎机零部件的设计和计算
2.1齿轮的设计和计算
齿轮传动是机械传动中最重要、应用最广泛的一种传动。
其主要优缺点是:
传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。
其主要缺点是:
制造精度要求高,制造费用大,精度等级低时振动和噪声大,不宜用于轴间距离较大的传动。
2.1.1齿轮传动方式的选用
大小齿轮传动为平行轴斜齿轮传动。
平行轴斜齿轮与直齿轮比较,其主要优点为:
1)重合度大、齿面接触情况好,因此传动平稳,承载能力高。
2)斜齿轮的最少齿数比直齿轮的少,故机构更紧凑。
3)斜齿轮的制造成本与直齿轮相同。
由于上述优点,斜齿轮被广泛地用于高速、重载的传动中。
平行轴斜齿轮的主要缺点为:
因存在螺旋角β,故传动时会产生轴向力
图3大齿轮
2.2滚动轴承的设计和计算
轴承是用以支撑轴和轴上回转或摆动零件的部件,在各种机械中应用广泛。
根据轴承工作时的摩擦性质,可分为滚动轴承和滑动轴承两大类。
滚动轴承依靠主要元件间的滚动接触来承受载荷,它与滑动轴承相比,具有磨檫阻力小、效率高、启动容易、润滑简便等优点。
同时,滚动轴承绝大多数已经标准化,并由专业厂家生产,选用和更换都很方便。
其缺点是抗冲击能力差,工作时有噪声,以及工作寿命不及液体摩擦的滑动轴承。
2.2.1滚动轴承的失效形式和计算准则
1、失效形式
(1)疲劳强度轴承在安装、润滑、维护良好的条件下工作时,由于各承载元件承受周期性变化的应力作用,各接触表面将会产生局部脱落,这就是疲劳点蚀。
它是滚动轴承主要的失效形式。
轴承发生疲劳点蚀破坏后,通常在运转时会出现比较强烈的振动、噪声和发热现象,轴承的旋转精度也会下降,会使机器丧失正常的工作能力。
(2)磨损由于润滑不充分、密封不好或润滑油不清洁,以及工作环境多尘,一些金属屑或磨粒性灰尘进入轴承的工作部位,轴承将会发生严重的磨损,导致轴承内、外圈与滚动体间间隙增大、振动加剧及旋转精度降低而报废。
(3)塑性变形在过大的静载荷冲击作用下,轴承承载元件间的接触应力超过了元件材料的屈服极限,接触部位发生塑性变形,形成凹坑,使轴承摩擦阻力矩增大,旋转精度下降且出现振动和噪声。
这种失效多发生在低速重载或作往复摆动的轴承中。
除上述的失效形式外,轴