湘教版数学七年级下册期末复习四相交线与平行线Word文档格式.docx
《湘教版数学七年级下册期末复习四相交线与平行线Word文档格式.docx》由会员分享,可在线阅读,更多相关《湘教版数学七年级下册期末复习四相交线与平行线Word文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
【分析】将每个关键点向左平移3个单位,再顺次连接即可.
【解答】如图所示.
【方法归纳】在平移时,图形上所有点都按同一方向移动相同的距离.
3.下列图形中,由如图经过一次平移得到的图形是()
4.如图,经过平移,五边形的顶点A移到了点A′,作出平移后的五边形.
考点三平行线的性质
【例3】如图,AB∥CD,∠BED=90°
.试说明∠B与∠D之间的关系,并说明理由.
【分析】首先过点E作EF∥AB,由AB∥CD,即可得EF∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,再把两式相加即可求得∠B与∠D互余.
【解答】∠B+∠D=90°
理由:
过点E作EF∥AB,
因为AB∥CD,所以EF∥AB∥CD.
所以∠1=∠B,∠2=∠D.
所以∠1+∠2=∠B+∠D.
又因为∠BED=∠1+∠2=90°
所以∠B+∠D=90°
【方法归纳】由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.掌握常见题型辅助线的作法,能提高解题速度.
5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°
,∠2=35°
则∠3=__________度.
6.如图,∠AED=80°
,BD是∠ABC的平分线,DE∥BC,求∠EDB的度数.
考点四平行线的判定
【例4】如图,已知∠ADC=∠ABC,DE,BF分别平分∠ADC和∠ABC,且∠1=∠2,试说明AB∥DC的理由.
【分析】根据角平分线性质可得∠CDE=∠1,结合已知显然有∠CDE=∠2,这时由平行线的判定即可得出结论.
【解答】因为DE,BF分别平分∠ADC和∠ABC(已知),
所以∠CDE=
∠ADC,∠1=
∠ABC(角平分线的定义).
因为∠ADC=∠ABC(已知),
所以∠CDE=∠1(等量代换).
因为∠1=∠2(已知),
所以∠CDE=∠2(等量代换).
所以AB∥DC(内错角相等,两直线平行).
【方法归纳】我们已学过的判定两条直线平行的方法有五种:
同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行;
在同一平面内,垂直于同一条直线的两条直线平行;
平行于同一条直线的两条直线平行.
7.如图,下列条件中,能判定DE∥AC的是()
A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠2
8.如图,已知∠DAF=∠AFE,∠ADC+∠DCB=180°
,试问EF与BC平行吗?
为什么?
考点五平行线的性质与判定的综合运用
【例5】如图,FE⊥BC,AD⊥BC,垂足分别为E,D,∠1=∠2,∠BAC=70°
,求∠AGD的度数.
【分析】由已知可得EF∥AD,于是有∠2=∠BAD,根据等量代换有∠1=∠BAD,所以DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°
,即可求解.
【解答】因为EF⊥BC,AD⊥BC,
所以EF∥AD.
所以∠2=∠BAD.
因为∠1=∠2,
所以∠1=∠BAD.
所以DG∥AB.
所以∠BAC+∠AGD=180°
因为∠BAC=70°
所以∠AGD=110°
【方法归纳】要求一个角的度数,当这个角不方便直接求解时,可由平行线中的同位角、内错角、同旁内角之间的关系转化求解.
9.如图,∠1与∠2互补,∠3=135°
,则∠4的度数是()
A.45°
B.55°
C.65°
D.75°
10.如图,AB∥DE,∠EFC=∠ACB,∠CAB=
∠BAD,试说明AD∥BC.
考点六平面内两直线的位置关系
【例6】如图,直线AB上有一点O,射线OC把平角∠AOB分成两个角,OD是∠BOC的平分线,OE是∠AOC的平分线,试确定OE与OD的位置关系.
【分析】根据角平分线的定义计算∠EOD的大小,即可求解.
【解答】因为OD是∠BOC的平分线,
所以∠COD=
∠BOC.
同理∠EOC=
∠AOC.
所以∠EOD=∠EOC+∠COD=
×
(∠AOC+∠BOC)=90°
所以OE⊥OD.
【方法归纳】同一平面内两条直线有两种特殊的位置关系:
垂直与平行,要确定两条直线的位置关系,往往也是考虑这两种.
11.如图,AD⊥BC于点D,∠1=∠2,∠CDG=∠B,请你判断EF与BC的位置关系,并说明理由.
复习测试:
一、选择题(每小题3分,共24分)
1.下面四个图形中,∠1与∠2不是对顶角的图形的个数是()
A.0B.1C.2D.3
2.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()
A.16cmB.18cmC.20cmD.22cm
3.如图,下列条件中,不能判断AD∥BC的是()
A.∠1=∠3B.∠2=∠4C.∠EAD=∠BD.∠D=∠DCF
4.下列说法正确的是()
A.相等的两个角是对顶角
B.同位角相等
C.图形平移后的大小可以发生改变
D.两条直线相交所成的四个角都相等,则这两条直线互相垂直
5.如图,已知∠1=∠2,∠BAD=∠BCD,则下列结论:
①AB∥CD;
②AD∥BC;
③∠B=∠D;
④∠D=∠ACB.正确的有()
A.1个B.2个C.3个D.4个
6.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()
A.CD>ADB.AC<BCC.BC>BDD.CD<BD
7.如图,直线AB,CD交于O,OE⊥AB,OF平分∠DOB,∠EOF=70°
,则∠AOC的度数是()
A.20°
B.30°
C.40°
D.50°
8.如图,直线l1∥l2,∠A=125°
,∠B=85°
,则∠1+∠2=()
A.30°
B.35°
C.36°
D.40°
二、填空题(每小题4分,共16分)
9.在同一平面内,直线l1,l2相交于点O,若l3∥l2,则直线l1和l3的位置关系是__________.
10.如图所示,已知AB∥DE,∠ABC=80°
,∠CDE=140°
,则∠BCD的度数为__________°
11.如图,直线a、b被直线c所截,若满足__________,则a、b平行.
12.著名的比萨斜塔建成于12世纪,塔身主体为圆柱体,从建成之日起就一直在倾斜,如图.目前,它与地面所成的较大的角为∠1=95°
,问:
它与地面形成的较小的角∠2为__________°
三、解答题(共60分)
13.(8分)如图,AB、CD相交于点O,OB平分∠DOE,∠AOC=37°
,求∠BOC,∠BOE的度数.
14.(10分)如图,∠1和∠D互余,CE⊥DE,问AB与CD平行吗?
15.(10分)如图,∠1=∠2,∠A=75°
,求∠ADC的度数.
16.(10分)如图所示,已知∠B=43°
,∠BDC=43°
,∠A=∠1,试说明∠2=∠BDE.
17.(10分)某会展中心准备在主楼梯上铺上红色地毯,这种地毯的批发价为每平方米80元,主楼梯的长为8米,其侧面如图所示,那么买地毯至少需要多少元?
18.(12分)如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°
.
(1)求∠2的度数;
(2)试说明HN∥GM;
(3)求∠HNG的度数.
参考答案
变式练习
1.D
2.设∠1=2x,∠2=x,
因为∠AOE=90°
所以x+2x=90°
,解得x=30°
所以∠BOC=180°
-∠2=180°
-30°
=150°
因为OF平分∠BOC,
所以∠COF=
150°
=75°
3.C
4.图略.
5.80
6.因为DE∥BC,∠AED=80°
所以∠ABC=∠AED=80°
,∠EDB=∠DBC.
因为BD是∠ABC的平分线,
所以∠DBC=
∠ABC=40°
所以∠EDB=∠DBC=40°
7.C
8.EF∥BC.
理由:
因为∠DAF=∠AFE,
所以AD∥EF.
又因为∠ADC+∠DCB=180°
所以AD∥BC,
所以EF∥BC.
9.A
10.因为AB∥DE,
所以∠BAC=∠EFC.
因为∠EFC=∠ACB,
所以∠ACB=∠BAC.
因为∠CAB=
∠BAD,
所以∠ACB=∠DAC.
所以AD∥BC.
11.EF与BC的位置关系是垂直.
因为∠CDG=∠B(已知),
所以DG∥AB(同位角相等,两直线平行).
所以∠1=∠DAB(两直线平行,内错角相等).
又因为∠1=∠2(已知),
所以∠2=∠DAB(等量代换).
所以EF∥AD(同位角相等,两直线平行).
所以∠EFB=∠ADB(两直线平行,同位角相等).
又因为AD⊥BC于点D(已知),
所以∠ADB=90°
所以∠EFB=∠ADB=90°
所以EF与BC的位置关系是垂直.
复习测试
1.D2.C3.B4.D5.C6.C7.C8.A
9.相交10.4011.∠1=∠2(答案不唯一)12.85
13.因为∠AOC和∠BOD是对顶角,
所以∠BOD=∠AOC=37°
所以∠BOE=37°
,∠BOC=180°
-∠BOD=143°
14.AB∥CD.
因为CE⊥DE,
所以∠CED=90°
因为∠1+∠CED+∠BED=180°
所以∠1+∠BED=90°
因为∠1和∠D互余,
所以∠1+∠D=90°
所以∠BED=∠D.
所以AB∥CD.
15.因为∠1=∠2,
所以AB∥CD,
所以∠ADC+∠A=180°
,
所以∠ADC=180°
-75°
=105°
16.因为∠B=43°
所以∠B=∠BDC,
所以∠A=∠C.
因为∠A=∠1,
所以∠C=∠1,
所以AC∥DE,
所以∠2=∠BDE.
17.利用平移知识将楼梯水平方向的线段沿竖直方向移到最下边,于是铺地毯的横向线段之和就等于3.5m,同理,铺地毯的纵向线段之和就等于2m,所以地毯的总宽度就等于3.5+2=5.5(m),总面积为5.5×
8=44(m2),所以买地毯至少需要44×
80=3520(元).
18.
(1)因为AB∥CD,
所以∠EHD=∠1=50°
所以∠2=∠EHD=50°
;
(2)因为GM⊥EF,HN⊥EF,
所以∠MGH=90°
,∠NHF=90°
所以∠MGH=∠NHF,
所以HN∥GM;
(3)因为HN⊥EF,
所以∠NHG=90°
因为∠NGH=∠1=50°
所以∠HNG=90°
=40°