感应分压器检定规程文档格式.docx

上传人:b****5 文档编号:20590530 上传时间:2023-01-24 格式:DOCX 页数:52 大小:336.77KB
下载 相关 举报
感应分压器检定规程文档格式.docx_第1页
第1页 / 共52页
感应分压器检定规程文档格式.docx_第2页
第2页 / 共52页
感应分压器检定规程文档格式.docx_第3页
第3页 / 共52页
感应分压器检定规程文档格式.docx_第4页
第4页 / 共52页
感应分压器检定规程文档格式.docx_第5页
第5页 / 共52页
点击查看更多>>
下载资源
资源描述

感应分压器检定规程文档格式.docx

《感应分压器检定规程文档格式.docx》由会员分享,可在线阅读,更多相关《感应分压器检定规程文档格式.docx(52页珍藏版)》请在冰豆网上搜索。

感应分压器检定规程文档格式.docx

角差β=输出电压的虚部误差与输入电压的比值。

传递比率的实部误差是感应分压器检定的主要指标,通常简称为比差。

传递比率的虚部误差,由于它表示相移的关系,而且通常数值不大,所以一般以β=tgθ(为输出电压复量相对于输入电压复量的相移)的关系来代替,并称之为角差,以微弧度来表示。

实际上,感应分压器的总的误差表达式为:

式中:

N--感应分压器的总段数;

ni--感应分压器抽头的序号;

r--感应分压器各段绕组的电阻;

l--感应分压器各段绕组的漏感;

g--感应分压器各段绕组的分布电导;

C--感应分压器各段绕组的分布电容;

ω--角频率。

把△D表达式中的实部和虚部分开,以α表示实部,β表示虚部,则

△D=α+jβ

按上列关系式得出典型的感应分压器误差分布,如图4所示,比差和角差的分布状态都是S型曲线,与正弦曲线非常近似,进一步可以看出,比差基本上随ω2变化,而角差基本上随ω变化。

图4典型感应分压器(非等电位屏蔽绕组)的误差分布图

4感应分压器结构参量

4.1测量绕组的输入阻抗:

感应分压器输出端开路时,对电源所呈现的阻抗。

对组合铁芯结构(双级)的分压器是指测量绕组输入端的阻抗,但此时激磁绕组由一个与测量绕组相同幅值和相位的电压来供电。

4.2激磁绕组的输入阻抗:

在组合铁芯结构(双级)的分压器中,当测量绕组由一个与激磁绕组相同幅值和相位的电压来供电时,激磁绕组对电源所呈现的阻抗。

4.3输出阻抗:

指当分压器输入端短路时,分压器对任意负载所呈现的阻抗。

输出阻抗与分压器的分压端位置有关,其电抗部分还与频率有关,但可以测定出极大输出阻抗。

4.4极限工作电压:

输入电压的允许数值不得超过下列规定:

4.4.1制造厂所规定的极大工作电压(均方根值)Uc

4.4.2在较低频率下,电压与频率的关系:

Uf=kf式中:

Uf--以V为单位的电压值;

k--制造厂给出的系数;

f--频率,以HZ为单位。

二、技术要求及检定条件

5感应分压器准确度

在感应分压器国家标准未颁布前,感应分压器的准确度,暂按比差和角差评定。

比差的准确度规定于表1,对角差在检定证书中应同时给出检定数值。

6外观及标记

6.1感应分压器外貌上应当无机械损伤及裂痕,标记应齐全清晰,便于读数。

各盘有分压系数和表示位置的数字,开关转动灵活,输入端和输出端应当连接可靠,部件齐全,屏蔽接地方式应有标记,工作电压和频率应当表示出来,准确度及出厂编号均应明确,有封印的不得随意启封。

6.2标记:

6.2.1制造厂名称。

6.2.2产品型号。

6.2.3产品编号。

6.2.4准确度。

6.2.5工作电压范围。

6.2.6工作频率范围。

6.2.7测量范围。

表1

6.2.8接线端钮文字标记。

6.2.9屏蔽和接地方式标记。

6.2.10放置位置符号。

6.2.11各盘的分压系数。

7感应分压器测量电路与外壳之间的绝缘电阻,按制造厂给出的技术条件要求。

8感应分压器的输入端与外壳之间的绝缘强度,按制造厂给出的技术条件要求。

9检定条件

 

表2

感应分压器应在表2规定的条件下进检定。

感应分压器在作分压器使用时,屏蔽应接在分压器的低端(0端)。

感应分压器在作其它方面使用时,应按实际要求连接屏蔽,并应在相应的屏蔽方式下进行检定。

三、检定项目及检定方法

10外观及标记的检查,应符合本规程8.1款及8.2款的要求。

11绝缘电阻及绝缘强度的检定,应符合本规程第7条及第8条的要求,绝缘强度在周期检定时可不进行

12基本误差的检定

12.1单盘感应分压器的检定:

12.1.1两向平衡参考电势法:

原理性线路如图5所示。

图5用两向平衡参考电势法检定单盘感应分压器示意图

图中:

Fx-被检定感应分压器;

△1-补偿器示值,分实部FG--屏蔽保护电位分压器;

和虚部;

△1=αi+jβ

Fs-参考分压器;

S、S'

-倒向开关,联动

检定原理如下:

设被检定感应分压器Fx的各段电势Ed相对于其平均值E0的偏差为δxi,则分压抽头的分压系数误差△Di=i∑1δxi,如以降压比为N的参考分压器提供一段电势Es,它的名义值接近于E0,设其与E0之差为δ,并称它为参考电势误差,当以参考电势Es与各段电压Ed逐段比较,并用补偿器使回路平衡,则有

如在检定过程中认为参考电势不变化,则δs为常数,而且对分压器来说N∑1δxi≡0,于是(

4)式为

(6)式说明在检定过程中,δs值可以通过N次补偿器示值△i的算术平均值计算出来,而且进一步把(6)式代入(3)式中,可以把δxi计算出来。

由于△Di=i∑1δxi于是被检定分压器的传递比率误差即可获得,这种方法对于低频和低压情况,可以满足前面的δs为常数的假设,所以能够成立,但对于高频和高压,例如常规结构的分压器在5kHZ以上、100V以上时,由于分布参量引起泄漏而使检定方法带来了很明显的误差,分布参量与各段的导纳和分布电容有关,以Y0=G0+jωC0来代表,按照自耦式感应分压器的基本误差分析可知,它对各段的影响有下列规律:

由于这些分面布参量的存在,加上感应分压器是在各段电位分布不相同的条件下检定的,由于不同的电位分布,使得检定装置出现随着各段电势的变动而变化的泄漏,这就给检定结果带来了一个随着电位逐段增加而逐渐增大的系统误差,这个误差的关系式:

k'

--误差曲线的斜率;

ω--角频率;

E0--段电势的平均值;

n--段数;

C0--等效分布电容;

Z--检定回路中的等效阻抗。

在高频和高压下ω、E0都变大,因此△Es就愈来愈大,大大地影响检定结果,但是这个误差是属于系统性的,假如采用对称消除方法,即在反向电位分布情况下,把感应分压器再检定一遍,此时,对同一分压器各段的泄漏误差是以反符号出现的,由于绝对值大致不变,所以有可能用二次结果平均值的方法得以消除,为此用换向开关改变Fx的电位分布,即可达到此目的,这就是两向平衡法的基本点,采用两向平衡时,检定结果做如下处理:

△i正--在第i段正向平衡时,补偿器示值;

△i反--在第i段反向平衡时,补偿器示值。

从而得到各抽头的传递比率误差:

两向平衡参考法,在1kHZ下准确度为±

10-9,10kHZ下为±

×

10-7。

实施两向平衡参考法时,要注意保护电位的同步调节,务使指零系统的屏蔽与芯线之间的电位差趋近于零,避免空间干扰,并注意被检分压器的屏蔽连接方式。

12.1.2参考绕组两次平衡方法:

如图6所示,利用一个固定的参考绕组,在相对检定方法中提供一个参考电势Es,当与被检分压器一段比较时,先作一次引入参考电势的状态下的段平衡,然后作一次引出参考电势状态下的零平衡,从段平衡时补偿器示值△i(i-1,s)减去相应零平衡时补偿器示值△i-1,i-1,则得到被检分压器第i段电势与参考电势的比较关系,因而应用12.1.1中所介绍的单向参考电势法即可求得δxi和△Di。

实施参考绕组两次平衡法,仍然要采用等电位保护,辅助分压器应当与被检分压器具有相同的N值,用它提供的电位把参考绕组的电位提升,但它对准确度要求不高,在两次平衡过程中它的误差可消除。

在实施这个方法时,引线压降对测量结果有影响,应当采取技术措施加以消除(见12.2.1c)。

这个方法要求参考绕组所提供的电势保持恒定,但在不等电位分布的参考法检定中,参考绕组的变动是必然的,所以这个方法的系统误差问题应加以消除。

如果消除系统误差,这个方法在1kHZ可达2×

10-8,10kHZ下可达1×

的准确度。

12.1.3参考绕组相对平衡法:

原理图见图7。

被测分压器接到电源0和10端,微差补偿器串接在参考变压器的电压绕组的高端。

微差补偿器提供电势γU0(γ是微差补偿器的比率系数),它与U0是叠加的,于是得:

图6参考绕组两次平衡法检单盘感应分压器原理图

E--被检分压器的两端压;

Ux--被检分压器的输出电压;

Us--参考分压器的输出电压;

D〃s--参考分压器电压绕组抽头的分压系数;

D'

s--参考绕组的变化;

D7--七位分压器的分压系数;

Ds--参考分压器总的分压系数(即Ds=D〃s+D'

sD7)。

图7参考绕组相对平衡法原理图

当Ds值调节到Ds的标称时,微差补偿器的输出电势使线路平衡,则微差补偿器的读数值直接为Dx的相对误差。

参考绕组相对平衡法的准确度与参考组绕两次平衡法的准确度一致。

12.2多盘感应分压器的检定:

12.2.1相对法检定:

原理图见图8所示。

图8感应分压器的相对检定线路

Fs-标准分压器;

Fx-被检分压器;

FG-保护电位分压器

当已建立了标准分压器以后来,要对法就是很有用的方法,因为它可以实现整体检定。

设标准分压器的传递比率误差为△Dsi,被检分压器的传递比率误差为△Dxi,对于i抽头用微差补偿器来补偿其差值,使指零仪指零,设其差值为△i,可是

E入--电源电压;

△i--微差补偿器的示值,可视为误差改正值;

D0--分压系数的名义值。

a被检定点:

如由m个单盘十进感应分压器组成的一个m盘感应分压器,则它的示值组合数有10m个,如m=8个,则示值数目达108个,要逐个检定是不可能的。

按照实际情况分析,根据目前感应分压器的指标和结构特点,一般说来,只检定前三盘及盘与盘之间的负载影响就可以大致确定该分压器的误差存在范围,如再加上一些必要的附加检定,就更可靠地迫近于这个分压器的误差界,这样一来仅考虑103个点就可以了,事实上,每台感应分压器要检定103也是不容易做到的,所以还可以进一步淘汰一些误差变化不大的组合,根据大量实验结论得到下面的一个选点方案,见表3。

b零位电势:

用微差补偿器直接检定。

c引线改正:

在相对法检定时,引线压降应预先消除,通常引线压降可能在1×

10-6~1×

10-8的范围内,视分压器具体输入阻抗而定。

消除引线压降方法可以是多种多样的,这里介绍一种简易可行的方法,将被检分压器和标准分压器的输入端,以直径约1mm、长约1m的裸铜线相对连接,如图8所示,输出端用指零系统连接。

利用电源A、B端在连接线上的分压作用,可以让A点到Fs的压降与A点到Fx的压降自动抵消,同样可以让B点到Fs的压降与B点到Fs的压降自动抵消。

如A为高电位,B为低电位,则FG放到零时,把a、b分别放到Fs和Fx的输入低端,移动B点使指零仪指零,当然此时应通过微差补偿器的正交分量,作辅助调节,力求实部指零,则B点即达到要求的位置,此时B点两侧的压降相互抵消。

同样FG放到10,把a、b分别放放高端,调节A点位置,使指零,当指零仪零时,则A点达到要求的位置。

这样调节以后来,即说明Fs的输入端电压与Fs输入端电压一致。

然后a、b引线放到Fs和Fx的输出端,于是在调节FG的同时,可以作相对检定。

这个调节方法,如注意到两根引线的空间面积尽可能减小和相对固定的话,则这个调节效果甚佳,有整个音频范围内都适用。

多盘感应分压器被检定点选择方案(对8位分压器而言)表3

减小的引线压降的另一方法,就是利用组合铁芯结构中,测量绕组中等效阻抗尤其是等效输入阻抗增大的原理,将测量绕组和激磁绕组的连接分开,延伸到被检分压器的输入端再连接起来,这样在测量绕组内引线的压降可以减小,这个方法对检定±

10-7的分压器可行,但对于10-8量级的检定,尚有影响。

此外还有在引线中注入微差电势抵消压降的方法,但由于设备复杂而且不够稳定,还存在着一些缺点。

如不采用自动补偿,可采用微差测量系统直接测出引线压降,按理论计算进行改正的方法对于单盘感应分压器来说是可行的,特别是在不同场合下测量比对数据时,往往要采用理论改正的方法,如在高端上有引线压降Vl,则Vl对各段的电势有Vl/N的影响,对nl抽头来说就有Vl/nnl的影响,所以对各抽头来说,只要相应减去n/NVl,就可以消除Vl对各抽头的影响。

同样当低端有引线压线V'

l(N-Ni/N)。

如高端和低端同时改正,则可按代数和来计算,见下列(表4):

Vl=-20×

10-9,V'

l=-10×

10-9。

12.2.2互检法--多盘感应分压器绝对检定方法:

这个方法是建立在相对检定和多盘参考分压器的基础上,也是将参考电势法与相对法结合起来,并利用两个多盘参考分压器(串级)相互检定的原理,来核对检定结果的方法。

这个方法的特点是两台互为参考的分压器可同时得出检定结果,而且是在原位下达到绝对检定。

多盘感应分压器互检法的原理如下:

如图9所示,有两台串级连接的多盘感应分压器A和B,按相对法线路连接,用微差补偿器读出其差。

当以B为参考,检定A时作两次平衡,以B分压器的第二盘全部电势作为检定A分压器第一盘各段的参考电势,然后把分压器的第二盘电势放到零位,此时对A、B分压器作i-1段的零平衡。

当引入参考电势时,作A分压器i段与B分压器i-1段加上参考电势时的平衡,称为段平衡。

从段平衡时的△i,(l-1,s)值减去零平衡时的△i-1,i-1值,便得到A分压器的第i段电势与参考电势(B分压器第二盘电势)的比较关系,由此按上述参考绕组两次平衡方法的道理,可以求出A分压器的第一盘的δi和△Di。

表4

利用同样道理,以B分压器的第三盘电势作为参考电势,可以对A分压器的第二盘进行绝对检定。

同样,以B分压器的第四盘电势作为参考电势,可以对A分压器的第三盘作绝对检定。

图9示出互检法的工作原理是以B为参考,以B分压器的第二盘总电势作为参考电势与A分压器第一盘各段进行比较的情况。

从段平衡关系得:

图9互检法原理图

从零平衡关系得:

这里说明:

E的右上标①、②、③代表各盘的序号,右下标代表各盘抽头位置,Ei代表相应各抽头位置上的输出电压。

将式(18)减去式(19)得:

由此按参考法可得:

这就是A分压器第一盘的检定结果。

其它各盘的检定原理如上分析。

这里应当指出:

如将A分压器作参考,同样可以将B分压器检定出来,由此可见A、B分压器通过互检方法可以同时获得检定结果。

通过A、B检定结果的数据,计算出其差值,可以与零平衡数据相比较。

零平衡数据即A与B分压器的直接差值,如在互检法结果中无意外的误差出现,则这些数据都应在合理范围内重合。

通过这样的措施可以检定互检法的可靠程度,因此赋予了互检法独立性。

互检法可以绝对地在原位下检定多盘感应分压器,但对选点问题仍未解决,这已在相对法中考虑。

实现这个方法时,由于参考分压器有内部引线压降存在,在消除引线压降时,应将指零系统直接接在输出端上进行调节,调节方法见12.2.1(C)所述。

此时还应注意在消除低端引线和高端引线压降时第一盘示值应对应放到0到10点。

12.2.3单盘过渡法检定:

此法是利用单盘绝对检定而对多盘感应分压器作相对传递的一种方法,对多盘感应分压器整体检定很有用处,尤其在工厂生产条件,利用两向平衡参考法检定几个N=7、8、9、10、11、12的单盘感应分压器,可以在“感应分压器检定装置”上分别按其相应段进行绝对检定,其准确度在1kHZ以下是3×

10-9,这些N值不同的单盘感应分压器就相当于表5所列出的各种名义值的比率标准量具,其准确度均为3×

10-9(1kHZ时)。

以表5所列的标准比率量具与被检多盘感应分压器进行相对法检定,即以N=7、8、10、11及12各单盘感应分压器作标准,把被检感应分压器的示值调定到表中所列的相应数值上进行比对,其差值可以用补偿器测出,这样的检定结果属于整体检定。

由于标准量具的误差可以忽略不计,所以被检定的多盘感应分压器便达到整体检定的目的。

从实践中证明N=9时,可以反映出串级连接的多盘感应分压器的极大误差,当N=10时,可以检定各种连接线路的感应分压器的第一盘,当N取较多数值时,可以反映出多盘感应分压器的极大误差。

此外,作为一个多盘感应分压器经常要求作万用比率臂使

用,因此常用的几个比率亦应进行绝对检定。

当N=10时,可检定1∶1、1∶4、1∶9;

当N=9时,可检定1∶8、1∶2;

当N=11时,可检定1∶10;

当N=12时,可检定1∶1、1∶2、1∶3、1∶5;

当N=8时,可检定1∶7、1∶1、1∶3;

当N=7时,可检定1∶6。

总的来说,综合以上检定,一般变压器比率电桥及多盘感应分压器的常用比率均能作准确的整体的绝对检定,其准确度为±

10-8(1kHZ时)。

12.3虚部补偿方法

当Fs采用等电位线路检定时,虚部补偿线如图10所示,由辅助多盘分压器Ff通过R-C网络注入虚部电势进行补偿。

当Fx一端接地时,采用图11所示线路。

图10用R-C网络补偿虚部的方法

当N取下列数值时,N段分压器各抽头有下列相应比率表5

图11当Fx一端接地时,虚部补偿方法

四、检定结果的处理

13检定结果的评定

从检定数据中以误差形式给出比差和角差数据。

误差评定,具有0~1.0之间无穷多个误差数列的性质,从误差分布规律可以确定传递比率误差是有界的,它存在着下界和上界,即e下、e上(e下是下界,e上是上界)。

如在检定准确度ε下进行检定,则可取〔e下,e上〕±

ε作为多盘感应分压器准确度评定依据。

以附录3第3节为例,从检定数据中得到误差的下界为-15×

10-8,误差的上界为+53×

10-8,标准感应分压器的准确度为±

10-8,所以被检定多盘感应分压器的误差存在于〔-15,+53〕×

10-8区时内,其比差准确度评定为53×

10-8±

10-8。

这种评定误差的方法也适用于单盘感应分压器。

14检定证书

14.1检定证书格式见附录2。

14.2检定证书应当给出在规定的电压、频率、温度和湿度下所检定的全部检定点的数据,并明确给出准确度以及屏蔽连接的方式。

14.3检定证书给出的数据有效位数应比被检感应分压器的规定准确度数值多一位,数据按四舍五入化整。

14.4检定后认为不合格的感应分压器不发给检定证书,只给检定通知书,可以降级使用。

15检定周期

比差准确度指标在1×

10-3~1×

10-6范围内的感应分压器检定周期为二年,其它比差准确度指标的感应分压器检定周期为三年。

附录

附录1检定系统

感应分压器的检定传递系统暂时分为三级传递,按比差检定准确度为±

10-8(1kHZ时),角差检定准确度为±

10-6(1kHZ时)的检定装置传递给比差准确度为±

10-8(1kHZ时)、角差准确度为±

10-8(1kHZ)的检定装置。

各级检定传递除最高一级用绝对法检定外,其余各级均遵照标准的不确定度应小于被检分压器不确定度的1/3的要求进行检定传递。

检定系统见方框图。

装置与装置之间的检定是通过过渡感应分压器进行比对时确定其检定准确度的。

对过渡感应分压器应当感标准感应分压器的要求,但其比差可以比被检定装置的比差准确度低半个数量级,但角差应当有相同的数量级。

附录2检定证书格式

检定结果

注:

下次送检时必须带此证书

附录3检定数据处理例

1单盘感应分压器数据处理例见表1。

2多盘感应分压器绝对检定(互检法)数据处理例见表2。

3多盘感应分压器相对法检定数据处理例见表3。

4单盘感应分压器检定多盘感应分压器数据处理例见表4。

单盘感应分压器绝对法检定记录(参考法)

V=10Vf+1kHZt=20℃

表1-1

证书编号:

检定员:

核验员:

日期:

表1-2

多盘感应分压器绝对法检定(互检法)原始记录

送检单位V=10Vf+1kHZt=20℃

仪器名称

型号生产厂

出厂编号

多盘感应分压器相对法检定记录

型号

出厂编号生产厂

表3

续表3

单盘过渡法检定多盘感应分压器原始记录

检定单位

仪器名称V=f=t=

出厂编号表4

续表4

附录4感应分压器检定装置图

1中国计量科学研究院感应分压器检定装置原理图,见图1所示。

2哈尔滨电工仪表研究所感应分压器检定装置原理图,见图2所示。

3中国计量科学研究院,桂林电表厂XQS5型交流阻抗比较装置检定感应分压器的原理图,见图3所示。

4上海仪器仪表研究所感应分压器检定装置原理图,见图4所示。

5广州市标准计量检定所DS-79型感应分压器检定装置图,见图5所示。

6广东省计量科学研究所AVRS-1型感应分压器检定装置原理图,见图6所示。

图4上海仪器仪表研究所感应分压器检定装置原理图

图5广州市标准计量检定所DS-79型感应分压器检定装置原理图

图6广东省计量科学研究所AVRS-1型感应分压

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 城乡园林规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1