eviews面板数据模型详解Word文档格式.docx
《eviews面板数据模型详解Word文档格式.docx》由会员分享,可在线阅读,更多相关《eviews面板数据模型详解Word文档格式.docx(43页珍藏版)》请在冰豆网上搜索。
5010.91
5323.18
5532.74
6012.6
CONSUMEJX
2942.11
3199.61
3266.81
3482.33
3623.56
3894.51
4549.32
CONSUMELN
3493.02
3719.91
3890.74
3989.93
•1356.06
4654.42
5342.64
CONSVMENMG
2767.84
3032.3
3105.74
3468.99
3927.75
4195.62
4859.88
CONSUMESD
3770.99
1040.63
4143.96
4515.05
5022
5252.41
5596.32
CONSUMESH
6763.12
6819.94
6866.41
8247.69
8868.19
9336.1
10164
CONSUMESX
3035.59
3228.71
3267.7
3492.98
3911.87
4123.01
4710.96
CONSUMETJ
•1679.61
5201.15
5471.01
5851.53
6121.01
69S7.22
7191.96
C0NSUME2J
5764.27
6170.14
6217.93
6521.54
7020.22
7952.39
8713.08
表9.21996—2002年中国东北、
华北.华东15个省级地区的居民家庭人均收入(元)数据
人均收入
INCOMES
•1512.77
4599.27
4770.47
5064.6
5293.55
5668.8
6032.4
INCOMEBJ
7332.01
7813.16
8471.98
9182.76
10319.69
11577.78
12463.92
INCOME町
5172.93
6143.64
6185.63
6859.81
7432.26
8313.08
9189.36
INCOMEHB
4442.81
4958.67
5081.64
5365.03
5661.16
5984.82
6679.68
INCOMEHLJ
3768.31
•1090.72
4268.5
4595.14
4912.88
5425.87
6100.56
INC051EJL
3805.53
4190.58
4206.64
4480.01
4810
5340.46
6260.16
INCOMEJS
5185.79
5765.2
6017.85
6538.2
6800.23
7375.1
8177.64
INCOMEJX
3780.2
4071.32
4251.42
4720.58
5103.58
5506.02
6335.64
INCOMELN
4207.23
4518.1
4617.24
4898.61
5357.79
5797.01
6524.52
INCOMENMG
3131.81
3944.67
•1353.02
4770.53
5129.05
5535.89
6051
INCOMESD
•1890.28
5190.79
5380.08
5808.96
6189.97
7101.08
7614.36
INC051ESH
8178.48
8138.89
8773.1
10931.64
11718.01
12883.46
13249.8
INCOMESX
3702.69
3989.92
4098.73
4342.61
4724.11
5391.05
6231.36
INCOMETJ
5967.71
6608.39
7110.54
7619.83
8140.5
8958.7
9337.56
INCOMEZJ
6955.79
7358.72
7836.76
8427.95
9279.16
10161.67
11715.6
表9.31996-2002年中国东北.华北、华东15个省级地区的消费者物价指数
物价抬数
PAH
109.9
101.3
100
97.8
100.7
100.5
99
PBJ
111.6
105.3
102.4
100.6
103.5
103.1
98.2
PFJ
105.9
101.7
99.7
99.1
102.1
98.7
99.5
PHB
107.1
98.4
98.1
PHLJ
104.4
100.4
96.8
98.3
100.8
99.3
PJL
107.2
103.7
99.2
98
98.6
PJS
109.3
99.4
100.1
PJX
108.4
102
101
100.3
100」
PLN
107.9
99.9
98.9
PXMG
107.6
104.5
99.8
101.3
100.6
100.2
PSD
109.6
102.8
99.4
101.8
PSH
109.2
101.5
102.5
PSX
99.6
103.9
PTJ
109
101.2
PZJ
98.8
99」
(1)建立面板数据工作文件首先建立工作文件。
打开工作文件后二过程如F
□Torkfile:
UHTITLED
bie*][proc[筋£
S]print心比||°
抽15十/・]|5hcworee]|Ger>
r]〔5dmpleJ
Range;
NewObject..・
GenerateSeries.・・
EredkLinks.・・
DisplayFilter:
*
⑥C
0resid
FetchfromDB...
Updateselected,fromDU...
Stor^selectedtoDB.・・
Copyselected.・・
Renanieselected..・.
Delateselects&
TrintSelected
建立面板数据库。
KerObject
在窗口中输入15个不同省级地区的标识。
S)EVie・s—[Pool:
COHSUMETorkTile:
UNTITLED:
:
Untitled\]
「□因
FileEditObJectVicwProcQuickOptions世indowHelp
_S'
X
View][Proc][Object][Print][Name][Freeze][EstimateJ[pefine)[PoolGenr][Sheet]
CrossSectionIdentifiers:
(Enteridentifiersbelowthisliitc)
AHBJ
FJ
HB
SD
SH
SX
TJ
ZJ|
(2)定义序列名并输入数据
[Pool:
COWSTTWEWorkTile:
TmTTTT.ED:
:
nntitled\]
产生3*15个尚未输入数据的变量名。
这样可以通过键盘输入或黏贴的方法数据数据。
(3)估计、选择面板模型
打开一个pool窗口,先输入变量后缀(所要使用的变量)。
点击Estimate,打开估计窗口。
CrossSectionIdentifiers;
(Enteridexrtifiersbelovthisline)
AH
BJFJHB
HU
JL
JS
JX
LN
GI
呱SDSHSXTJZJ
A.混合模型的估计方法左边的Common表示相同系数,即表示不同个体有相同的斜率。
得到如下输出结果:
DependentVariable:
CP?
Method:
PooledLeastSquares
Date:
07/D2/D8Time:
13:
13
Sample:
19962002
Includedobservations:
7
Cross-sectionsineluded:
15
Totalpool(balanced)observations:
105
Variable
Coefficient
Std.Errort-Statistic
Prob.
C
129.6313
63.692592.035265
0.0444
IP?
0.758726
0.00962279.68189
0.0000
R-squared
0.984036
Meandependentvar
4917.608
AdjustedR-squared
0.983881
S.D.dependentvar
1704704
S.E.ofregression
216.4270
Akaikeinfocriterion
13.61125
Sumsquaredresid
4824588.
Schwarzcriterion
13.66180
Loglikelihood
-712.5905
F-statistic
6349.204
Durbin-Watsonstat
0.784107
Prob(F-statistic)
0.000000
相应的表达式是:
C^r=129.63+0.76/^
(2.0)(79.7)R2=0.9&
SSEr=4824588
上式表示15个省级地区的城镇人均指出平均占收入的76%o
B.个体固定效应回归模型的估计方法将截距项选择区选Fixedeffects(固定效应)
得到如下输出结果^
07;
D2/O8Time:
36
Coefficient
Std.Error
t-Statistic
515.6142
81.59665
6.319061
0.697561
0.012692
54.96029
FixedEffects(Cross)
AH-C
-36.30583
BJ-C
537.5660
FJ-C
-47.64515
HB-C
-154.2367
HU-C
-1697015
JL-C
24.50427
JS-C
-35.19587
JX-C
-319.6960
LN-C
106.4273
NMG-C
-209.5484
SD-C
-134.1145
SH-C
266.9859
SX-C
-74.88901
TJ-C
47.22940
ZJ-C
198.6202
EffectsSpecification
Cross-sectionfixed(dummyvariables)
0.992488
0.991222
1704704
S.巳of便gression
159.7184
13.12414
2270386.
13.52855
-673.0173
783.8902
1.609517
Prob(F-statistic)
相应的表达式为:
CPtJ=515.6+0.70/^-36.3D,+537.6A+...+198.6D15
其中虚拟变量Dg…几的定义是:
八jl,如果属于第•个个体M=12・・・,15一[o,其他
15个省级地区的城镇人均指出平均占收入70%o从上面的结果可以看出北京市
居民的自发性消费明显高于其他地区。
接下来用F统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
比:
模型中不同个体的截距相同(真实模型为混合回归模型)。
厲:
模型中不同个体的截距项冬不同(真实模型为个体固定效应回归模型)。
F统计量定义为:
(SSE厂SSE“)I[(NT—k一\)一(NT—N—k"
_(SSEr—SSE“)/(N—1)
SSEJ(NT—N—k)SSEJ(NT-N-k)
其中SS&
.表示约朿模型,即混合估计模型的残差平方和,SSE“表示非约束模型,即个体固左效应回归模型的残差平方和。
非约束模型比约束模型多了N-1个被估参数。
所以本例中:
=8.1>
^(14,89)=1.8
F_(4824588-227386)/(15-1)2270386/(105—15—1)
所以推翻原假设,建立个体固定效应回归模型更合理。
07/02/D8Time:
U:
44
Cross-sectionsincluded:
2.577234
68.80548
0.037457
0.9702
0778860
0.010438
74.61911
FixedEffects(Period)
1996-C
105.9285
1997-C
134.0558
1998-C
54.84828
1999-C
-37.07404
2000-C
-7.118359
2001-C
-156.7474
2002-C
-93.89280
Periodfixed(dummyvariables)
0.986669
0.985707
1704.704
203.8001
13.54529
4028843.
13.74749
-703.1276
F・statistic
1025.643
0.785376
Prob(F-statistic)
CPit=2・6+0・78/£
+105.9"
+134.1Q+…—93.90
其中虚拟变量D丄、…的定义是:
八1,如果属于第t个截面,t=1996,...,2002
D=\
10,其他
D.个体随机效应回归模型估计
截距项选择Randomeffects(个体随机效应)
得到如下部分输出结果:
PooledEGLS(Cross-sectionrandomeffects)
07/02/08Time:
15:
06
SwamyandAroraestimatorofcomponentvariances
Coeificient
Sid.Error
345.1795
75.47217
4.573599
0.724569
0.010572
68.53814
RandomEffects(Cross)
-2.553433
367.0439
-54.24006
-104.8367
-1017680
54.90671
JS--C
-32.27868
-223.9519
112.1152
-133.1377
-100.8713
126.1820
-22.79189
10.08794
ZJ・・C
106.0939
CPit=345.2+0.72/^-2.6^+367.0Q+…+106心
(68.5)R2=0.9&
SSE=2979246
其中虚拟变量几“…几的定义是:
小(1,如果属于第i个个体,i=l,2,...,15—0,其他
接下来利用Hausnum统计量检验应该建立个体随机效应回归模型还是个体固定效应回归模型。
H。
:
个体效应与回归变量(圮)无关(个体随机效应回归模型)
耳:
个体效应与回归变量(/£
)相关(个体固定效应回归模型)
randomeffects)
分析过程如下:
©
EVievs-[Pool:
POOL02
Torkfile:
CASE13:
Casel3\]
^3FilegjiitObjectViewProc
QuickOptionsWindowHelp
-(51X
CrossSectionIdenti.£
iers
A
Fixed/RandomEffectsTesting
►
RedundantFixedEffects-Likelihoodhtio
Spreadsheet(stackeddatg)・・・
CorreiatedRandomEffects-HausmanTest
CoefficientTests
Representatioits
EstimationOutput
Residuals
CoefCovarianceMatrix
Label
Ar*t—
・54.24006
■104.8367
HLJ-C
-101.7680
・32.27