一阶环形倒立摆论文文档格式.docx
《一阶环形倒立摆论文文档格式.docx》由会员分享,可在线阅读,更多相关《一阶环形倒立摆论文文档格式.docx(51页珍藏版)》请在冰豆网上搜索。
Thispapermainlystudiesthedynamicbalancemovementcontrol,usingPIDcontrol,thesystemofvariousperformanceindicatorsmeettheexpectedrequirement
KEYWORDS:
Invertedpendulum;
Self-balancing;
Datafusion;
PIDcontrol
目录
第一章绪论1
1.1课题研究的目的和意义1
1.2发展历史与研究现状2
1.3本文研究的主要内容3
第二章倒立摆系统建模和定性分析4
2.1倒立摆系统特性分析4
2.2环形一级倒立摆系统数学模型6
第三章倒立摆的硬件设计8
3.1整体电路框图8
3.2单片机最小系统电路8
3.2.1单片机介绍8
3.2.2单片机最小系统10
3.3姿态传感器电路10
3.3.1角位移传感器10
3.3.2姿态传感器电路10
3.4电机驱动电路10
3.5电源电路10
第四章倒立摆的软件设计15
4.1软件功能与框架15
4.2单片机的资源配置15
4.3主函数功能20
4.4主要算法及实现20
4.4.1角度函数20
4.4.2倒立控制函数20
第五章上位机修改参数21
5.1串口猎人使用方法21
5.1.1基本收码发码21
5.1.2高级发码21
5.1.3高级收码22
5.1.4波形显示24
5.2下位机程序设计24
5.2.1下位机的高级发码程序设计24
5.2.2下位机的高级收码程序设计26
5.3上位机修改参数26
第六章系统调试30
6.1初步调试30
6.1.1上电检查30
6.1.2单片机程序下载和通信30
6.1.3测试PWM输出30
6.1.4姿态传感器采集30
6.2倒立控制调试30
6.2.1测量传感器零点偏移量30
6.2.2标定角位移传感器比例值30
6.3倒立控制参数整定30
6.4电机死区常数整定30
第七章总结与展望32
7.1工作总结32
7.2不足与展望32
7.2.1不足32
7.2.2展望32
附录一电路原理图42
附录二程序代码42
参考文献43
致谢44
第一章绪论
1.1课题研究的目的和意义
20世纪50年代,控制理论专家开始了对倒立摆系统的研究。
第一台一级倒立摆系统的实验装置是根据火箭发射助推器的原理设计的。
此后研究人员参照双足机器人的控制系统设计出了二级倒立摆,随着控制策略研究的深入,依次出现了三级摆、四级摆。
依据基座的运动形式,倒立摆系统主要分为三大类:
直线倒立摆、环形倒立摆和平面倒立摆,其中平面倒立摆是倒立摆系统中最复杂的一类。
2005年7月,北京师范大学复杂系统智能控制实验室在李洪兴教授的带领下采用“变论域自适应模糊控制理论”成功实现了对平面三级倒立摆实物系统的控制,这代表了世界范围内平面倒立摆系统领域的最先水平。
倒立摆系统的控制策略与杂技表演顶杆的控制技巧相似,很多抽象的控制理论都能够通过倒立摆控制系统来表现,比如系统的稳定性、鲁棒性等,因此倒立摆系统因其成本低廉、结构简单等优点,成为验证某一控制理论或控制方法的理想实验平台。
倒立摆系统是一种典型的多变量、非线性、强耦合、高阶次的自然不稳定系统,它的控制目标就是实现倒立摆系统各摆杆的平衡,使之没有过大震荡,并在加入随机扰动的情况下系统能够在扰动消失后迅速恢复平衡状态。
倒立摆系统的这种特性,使它成为进行控制理论研究的理想实验平台。
对倒立摆系统的研究能够有效的反映控制领域中的许多典型问题:
如非线性、鲁棒性、随动性、稳定性问题等。
现阶段检验某种控制方法或控制理论是否有较强的解决非线性和不稳定性问题的能力,一般都通过对倒立摆系统控制的研究来实现,倒立摆的研究不仅有其深刻的理论意义,同时还有重要的工程背景。
从日常生活中所见到的空间飞行器和各种伺服云台的稳定,到任何重心在上、支点在下的控制问题,都类似于倒立摆的控制,故对倒立摆系统的稳定控制研究在实际中有很多应用,如火箭发射、海上钻井平台以及卫星发射架的稳定控制、化工过程控制、控制飞机安全着陆等都属于这类问题。
由于其运动过程与人类的行走姿态相似,而其平衡控制又与火箭飞行的控制类似,致使倒立摆系统的研究在直升机的飞行控制、火箭发射过程中的姿态控制、双足机器人的直立行走控制等领域中具有重要的现实意义。
随着现代控制理论的发展,倒立摆系统研究的相关科研成果己广泛应用于机器人、军工、航天科技及一般工业过程等诸多领域。
1.2发展历史与研究现状
国际上最早报道倒立摆的研究论文是BrysonA.E.等于1970年撰写的Thesynthesisofregulatorlogicusingstate-variablecontrol和Mori.S等于1976年撰写的Controlofunstablemechanicalsystem-controlofpendulum,该两篇文章中均应用极点配置法对倒立摆系统进行稳定性控制研究,获得满意的结果。
我国最早有关倒立摆系统的研究文章是西安交通大学的尹征琦教授1985年发表在《信息与控制》的论文“采用模拟调节器的二级倒立摆的控制”。
该文采用降阶观测器这样简单的模拟控制器,实现了对二级倒立摆的控制,系统受到大的干扰或人为改变实际模型参数时,能非常稳定的工作。
这一研究成果激发了我国控制学界的强烈兴趣,倒立摆系统的控制研究逐渐成为我国控制学界的热门领域。
各种研究成果不断涌现,其中以北京师范大学李洪兴教授领导的复杂系统智能控制实验室成果最为骄人。
他们首先致力于研究一至四级直线型倒立摆实物系统的起摆和稳定实时控制,于2002年8月在世界上首次成功实现四级倒立摆实物系统起摆和稳定控制;
然后又将研究目光瞄准更加复杂难控的平面倒立摆系统,将变论域自适应模糊控制理论结合最优控制理论和经典PID控制理论的某些特点扩展为具有高维PID调节功能的变论域自适应控制理论,并将该理论应用于平面运动二级倒立摆实物系统控制研究,于2003年3月25日成功实现了平面运动二级倒立摆实物系统控制。
该项成果已达到国际先进水平甚至国际领先水平。
此外,以中国科学院易建强等、清华大学王中大等、中国科学技术大学张冬军等、上海交通大学付莹、哈尔滨工业大学柏桂珍等为代表的研究团队均在倒立摆系统的控制研究方面取得了重要的突破性成就。
研究对象涵盖直线型一级到四级倒立摆的起摆和稳定控制,倾斜轨道的直线三级倒立摆、平面倒立摆、圆轨(环形)倒立摆等,控制理论从经典的传递函数、频率特性、根轨迹为基础的频域分析方法,发展到PID、自适应、状态反馈、LQR最优控制、滑模变结构控制、智能控制、模糊控制及人工神经元网络。
1.3本文研究的主要内容
一阶环形倒立摆系统是一种欠驱动机械系统,本文所研究的内容是:
能否通过对电机转速和方向的控制,保持摆杆倒立的状态。
对于该问题,根据经验和直觉是难以判断出来的。
因此,需要对该系统建模,然后利用现代控制理论的方法进行系统的可控性的研究。
本文运用经典力学理论首先建立倒立摆系统的运动力学方程,然后通过分析,推出一阶环形倒立摆的数学模型。
根据分析运用PID控制算法,调试系统实现稳定倒立功能。
第二章倒立摆系统建模和定性分析
2.1倒立摆系统特性分析
倒立摆系统是典型的机械电子系统。
无论那种类型的倒立摆系统都有如下特性:
(l)藕合性。
倒立摆摆杆之间都是强藕合的。
这既是使得控制器参数调节、控制系统的设计变得复杂的原因,也是采用单电机驱动倒立摆系统的原因。
(2)开环不稳定系统。
倒立摆系统有两个平衡状态:
竖直向上和竖直向下。
开环状态即倒立摆竖直向上的状态,微小的扰动都会使系统进入到竖直向下的状态中,所以是系统不稳定的平衡点,竖直向下的状态是系统稳定的平衡点。
(3放射非线性系统。
倒立摆控制系统可以应用微分几何方法进行分析,因为它是一种典型的放射非线性系统。
(4)不确定性。
主要是指测量噪声、建立系统数学模型时的参数误差以及机械传动过程中的非线性因素所导致的难以量化的部分。
(5)欠冗余性。
倒立摆控制系统采用单电机驱动,因而它与冗余机构,有较大的不同。
之所以采用欠冗余的设计是为了节约有效的空间及经济成本而且是在不失系统可靠性的前提下进行,研究者往往是为了通过对倒立摆控制系统的研究来获得性能优越的新型控制器设计方法,并验证其有效性及其控制性能。
针对上述倒立摆系统的特性,在建模时一般忽略掉系统中一些次要的难以建模的因素,例如摆杆连接处质量分布不均匀、伺服电机由于安装而产生的静摩擦力、空气阻力、系统连接处的松弛程度、传动齿轮的间隙等等。
建模时将摆杆抽象为匀质刚体,这样可以通过力学原理建立一个较为精确的系统数学模型。
为了研究倒立摆系统控制方法而建立一个比较精确的线性系统模型是必不可少的。
一般采用两种方法对倒立摆系统建模:
牛顿力学分析方法、欧拉一拉格朗日原理(Lagrange方程)。
应用欧拉一拉格朗日原理可得如下方程:
其中,L为拉格朗日算子,Q,以是系统的广义外力,方向与广义坐标方向一致,q为广义变量,q,为系统的广义坐标,V是系统的势能,T是系统的动能,D是系统的耗散能。
在建立系统数学模型过程中,实际物理系统的方向应与所定义的坐标系原点及方向对应。
通过建模我们发现,对于一级柔性连接倒立摆和一级平面倒立摆系统都有六个状态变量,而环形一级倒立摆有四个状态变量,环形二级倒立摆有六个状态变量。
一般的,N级倒立摆有2(N+l)个状态变量。
将建立的数学模型写成仿射非线性系统的形式为:
其中ui为系统控制量,x=(q,q'
)T为系统状态变量,一般输出为y=qt。
一般情况下,i=1时,即是单电机驱动控制系统。
2.2环形一级倒立摆系统数学模型
忽略各种摩擦力、空气阻力等,将环形倒立摆系统抽象成水平杆和匀质摆杆组成的刚体系统。
一级倒立摆的结构如图2-1所示
图2-1环形一级倒立摆的结构图
θ0为水平杆与x轴的夹角,θ1为摆杆与垂直方向的夹角
表2-1环形一阶倒立摆的物理参数
水平杆的质量m0
水平杆绕端点的转动惯量J0
摆杆的质量m1
摆杆绕质心的转动惯量J1
水平杆的长度L0
摆杆质心到转轴的距离l1
系统的拉格朗日算子:
其中T为系统的总动能、L为拉格朗日算子、v为系统的总势能、q为系统的广义坐标。
拉格朗日方程:
其中g为系统沿广义坐标qi方向上的外力。
在环形一级倒立摆系统中广义坐
标:
(2-4)
一阶倒立摆系统的动能T:
(2-5)
其中,Tm1为摆杆的动能、Tmo为水平杆的动能。
倒立摆水平杆的动能:
在距系统摆杆转动中心距离l处取一小段距离dl,这一小段的坐标如下:
(2-7)
这一小段的动能:
倒立摆系统摆杆的动能:
以水平杆所在的水平面为零势能面,则系统的势能V即为摆杆的重力势能:
则,拉格朗日方程:
其中,u为水平杆上所受到的控制力矩。
在倒立摆系统实物控制中,采用水平摆杆的角加速度作为输入即:
。
将上述微分方程写成:
由式(2-11)可知
系统的状态变量:
,在平衡位置对系统模型进行线性化即:
系统的状态空间模型:
其中,A为系统的状态矩阵、B为控制矩阵、y为系统的输出、C为系统的输出矩阵由上述微分方程的:
其中,。
第三章倒立摆的硬件设计
3.1整体电路框图
根据设计方案,倒立摆的控制系统框图如图3-1所示。
图3-1系统硬件框图
其中,角位移传感器选用WDD35D-1角位移传感器,该角位移传感器是模拟量输出。
所以,根据控制系统的要求可以选用STC12C5410AD单片机。
3.2单片机最小系统电路
作为控制系统最重要的部分,单片机最小系统需要采集摆杆的运动状态,并对采集的信息进行处理计算,控制电机实现摆杆的稳定倒立,同时还要完成与上位机之间的通信,所以单片机最小系统会影响车模的控制效果。
3.2.1单片机介绍
STC12C5410系列单片机是单时钟机器周期(1T)的兼容8051内核单片机,是高速低功耗的新一代8051单片机,全新的流水线精简指令集结构,内部集成MAX810专用复位电路。
特点:
1.增强型1T流水线精简指令集结构8051CPU
2.工作电压:
5.5V---3.4V(5V单片机)3.8V—2.0V(3V单片机)
3.工作频率范围:
0—35MHz,相当于普通8051的0—420MHz,实际工作频率可达48MHz
4.用户应用程序空间12K10K8K6K4K2K字节
5.片上集成512字节RAM
6.通用IO口(2723个),复位后为:
准双向口弱上拉(普通8051传统IO口)可设置成四种模式:
准双向口弱上拉,推挽强上拉,仅为输入高阻,开漏,每个IO口驱动能力均可达到20mA,但整个芯片最大不得超过55mA
7.ISP(在系统可编程)IAP(在应用可编程),无需专用编程器可通过串口(P3.0P3.1)直接下载用户程序,数秒即可完成一片
8.EEPROM功能
9.看门狗
10.内部集成MAX810专用复位电路(外部晶体20M以下时,可省外部复位电路)
12.用户在下载用户程序时,可选择是使用内部RC振荡器还是外部晶体时钟常温下内部RC振荡器频率为:
5.2MHz---6.8MHz,精度要求不高时,可选择使用内部时钟,但因为有温漂,应认为是4MHz—8MHz
13.共2个16位定时器计数器
14.外部中断2路,下降沿中断或低电平触发中断,PowerDown模式可由外部中断低
15.电平触发中断方式唤醒
16.PWM(4路)PCA(可编程计数器阵列),也可用来再实现4个定时器
17.也可用来再实现4个定时器或4个外部中断(上升沿中断下降沿中断均可支持)
18.ADC,10位精度ADC,共8路
19.通用异步串行口(UART)
20.SPI同步通信口,主模式从模式
STC12C5410AD有28引脚和20引脚两种封装。
图3-2是28引脚的引脚分布及引脚功能图。
图3-2单片机引脚
3.2.2单片机最小系统
单片机最小系统包括振荡电路、复位电路和指示电路,如图3-3所示。
图3-3单片机最小系统
3.3姿态传感器电路
3.3.1角位移传感器
本系统所使用的是精密导电塑料电位器,型号为WDD35D-4。
其标称阻值为1KΩ,电阻公差±
15%,实测阻值960Ω。
介质耐压5OOV,独立线性度0.1%~1%,分辨精度为0.1%。
理论电气旋转角345士2o,机械转角360o。
启动力矩镇≤lmNm。
旋转负荷寿命50×
106圈(400rmin,每隔15min反转)。
额定功耗2W(70oC)、OW(125oC)。
工作温度范围-55~125oC。
工作电压<
15V。
因为实际系统中摆杆的摆角在士28o的范围内,因此在加上5V工作电压的情况下,电位器的输出电压范围为2.2llV~3.047V。
该传感器采用特殊形状的转子和线绕线圈,模拟线性可变差动传感器(LVDT)的线性位移,有较高的可靠性和性能,转子轴的旋转运动产生线性输出信号,围绕出厂预置的零位移动±
60(总共120)度。
此输出信号的相位指示离开零位的位移方向。
转子的非接触式电磁耦合使产品具有无限的分辨率,即绝对测量精度可达到零点几度。
图3-4角位移传感器
主要技术参数:
1.旋转位移,工作温度范围大,自带信号调节;
2.免接触型传感器,适应不良环境(振动、冲击、潮湿、盐雾等,出色的温度稳定性);
3.线性(100%行程):
0.25~0.5;
4.多种范围、直流输出。
3.3.2姿态传感器电路
摆杆在不同角度时,利用角位移传感器测出不同的模拟电压输出,经过算法处理后可以获得摆杆的倾角,姿态传感器电路如图3-5所示。
图3-5姿态传感器
电位器检测摆杆摆角的信号要经过许多环节的处理,最终计算出PWM输出脉宽控制电机转速和方向。
其中,每一个环节势必会引入一定的噪声与零点漂移,通过检测每个环节的性能来计算出整个系统的精度是非常麻烦和复杂的。
考虑到最终得到的是PWM输出脉宽。
所以我们直接测量输出PWM值与摆杆摆角的关系。
用于修改PID的参数。
3.4电机驱动电路
本系统的控制电机为直流电机,所以采用由驱动芯片BTC7970B组成的驱动电路。
BTC7970B大功率驱动芯片输出电压为6到24V,输出电流最大可达60A,内阻为16毫欧,控制线电压5V,PWM控制频率25k。
图3-6电机驱动电路
BTS7970B芯片特点:
1.额定的工作温度为-400C~1500C(除非另有规定);
2.功率转化效率高可达86%;
3.采用可靠的插拔式端子结构,使用更方便。
3.5电源电路
电源电路由24V开关电源和常用的LM78系列的集成稳压器件组成。
24V电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组24V电压。
这里主要介绍LM7805稳压电路。
LM7805外围电路简单,具有大电流输出(约1A)、过流保护等优点,如图3-7所示。
图3-7电源电路
电源电路可以分成滤波电路和稳压电路两部分:
(1)滤波电路:
将输出电压中的交流成分加以滤除,从而得到更平滑的直流电压。
各滤波电容C满足RL-C=(3~5)T2,其中T为输入