Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx

上传人:b****6 文档编号:20024259 上传时间:2023-01-16 格式:DOCX 页数:8 大小:957.72KB
下载 相关 举报
Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx_第1页
第1页 / 共8页
Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx_第2页
第2页 / 共8页
Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx_第3页
第3页 / 共8页
Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx_第4页
第4页 / 共8页
Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx

《Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx》由会员分享,可在线阅读,更多相关《Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx(8页珍藏版)》请在冰豆网上搜索。

Co3O4CNTs复合材料的制备及其电化学性能Word文件下载.docx

Wang等[7]通过水热合成法制备了Co3O4/CNTs纳米电缆,Co3O4表面主要暴露(220)晶面,在电流密度100A/g的条件下,其比电容仍然高达510F/g,而且充、放电循环2000次,该复合材料的比电容没有下降,Co3O4独特晶面取向的纳米电缆结构是Co3O4/CNTs高比电容的关键因素。

Chen等[8]采用多步路线高效制备了一种具有分层管状结构的Co3O4空心纳米粒子与CNTs的复合物,将该复合物用于锂离子电池阳极材料,当电流密度为0.1A/g时,可获得高达1281mA·

h/g的可逆容量,并且该电极材料具有非常好的倍率性能和长周期寿命。

Yin等[9]在超临界CO2中采用浸渍法将Co3O4纳米粒子均匀固定到垂直取向的CNTs阵列上,该复合物具备3D纳米结构,在电流密度1A/g的条件下,其比电容达到了833F/g;

当电流密度增加到20A/g时,比电容仍能维持在741F/g,电容保留率接近90%。

虽然人们对Co3O4/CNTs复合材料的电化学性质进行了详细研究,但是目前该研究主要集中在控制Co3O4和CNTs的微观结构、形貌以及两者之间的复合方式等[10-11] 

方向,关于Co3O4纳米粒子的粒径大小对Co3O4/CNTs复合电极材料比电容的影响鲜有报道。

笔者通过调节水与乙醇的体积比,采用水热合成法成功制备了具有不同Co3O4粒径(5~22nm)大小的Co3O4/CNTs复合材料。

1实验部分

1.1试剂与原料

多壁碳纳米管(CNTs,质量分数>

95%,中国科学院成都有机化学有限公司产品);

Co(NO3)2·

6H2O(质量分数>

99%,天津天河化学试剂厂产品);

乙炔黑(分析纯,上海诺泰化工有限公司产品);

聚偏氟乙烯(分析纯,广州松柏化工有限公司产品);

N-甲基吡咯烷酮(质量分数>

99.7%,南京瑞泽精细化工有限公司产品);

乙醇(分析纯,天津市安泰化工有限公司产品);

泡沫镍片(95目,开孔率98%,长沙力元新材料有限责任公司产品);

铂片(质量分数>

99.99%,上海辰华仪器有限公司产品);

其他试剂均为国药集团化学试剂有限公司产品;

去离子水(自制)。

1.2碳纳米管(CNTs)的酸化

称取一定量的CNTs置于质量分数为66%的浓硝酸溶液中,在140℃下加热回流10h,冷却至20℃后加水稀释,过滤,洗涤至中性,然后在烘箱中70℃干燥12h。

1.3Co3O4/CNTs复合材料的制备

在烧杯中量取一定体积的去离子水和乙醇,依次加入适量Co(NO3)2·

6H2O和酸化后的CNTs,20℃下持续搅拌,接着向上述混合物中逐滴加入NH3·

H2O,并剧烈搅拌形成黑色浆状混合物。

随后将该体系转移至带聚四氟乙烯内衬的不锈钢反应釜中,并置于150℃的烘箱中反应3h。

自然冷却至20℃,离心分离,用去离子水洗涤至中性,然后在70℃下干燥12h,收集得到黑色的Co3O4/CNTs复合材料,备用。

复合材料中Co3O4和CNTs的质量分数分别为80%和20%。

实验中通过改变去离子水与乙醇的体积比,调控复合材料中Co3O4纳米粒子的粒径,所得复合材料命名为Co3O4(X 

nm)/CNTs,其中X代表Co3O4纳米粒子的粒径。

不同Co3O4粒径的Co3O4(X 

nm)/CNTs复合材料的合成条件见表1。

1.4Co3O4(X 

nm)/CNTs复合材料表征

采用德国BrukerD8AdvanceX射线衍射仪(XRD)表征样品的物相结构,Cu靶Kα为辐射光源,管电压40kV,管电流40mA,扫描范围10°

~80°

,扫描速率6°

/min。

采用美国FEI公司TecnaiG2F30场发射透射电子显微镜(TEM)观察样品的微观形貌和粒径大小,加速电压为200kV。

1.5电化学性能测试

将CNTs或Co3O4(X 

nm)/CNTs与乙炔黑和聚偏氟乙烯按照8∶1∶1的质量比在研钵中混合,滴加一定量的N-甲基吡咯烷酮,研磨0.5h成浆状,均匀地涂抹在1.0cm×

1.0cm的泡沫镍片上,在120℃下真空干燥12h,于10MPa下压片并保持2min,压制成面积为1cm2的电极片。

电化学测试使用三电极测试系统,在上海辰华仪器有限公司生产的CHI760型电化学工作站上进行循环伏安、恒电流充电、恒电流放电、交流阻抗、循环寿命等电化学性能测试。

其中以KOH(6mol/L)作为电解质溶液,铂片作为对电极,饱和甘汞电极(SCE)作为参比电极,研究电极为制备的电极片。

循环伏安测试扫描速率为5~200mV/s,工作电压为0~0.55V,恒电流充、放电测试的电流密度为0.5~10A/g,工作电压为-0.2~0.45V。

交流阻抗测试在开路电压下进行,交流频率范围为0.01~100000Hz,电势振幅为5mV。

表1Co3O4(X 

nm)/CNTs复合材料的合成条件

Table1ThepreparationconditionsofCo3O4/CNTswithdifferentCo3O4 

particlesizes

2结果与讨论

2.1微观结构与形貌

图1为CNTs和Co3O4(X 

nm)/CNTs复合材料的TEM照片。

由图1(a)可见,酸化后的CNTs大部分封闭的端口已经打开,而且表面变得更加粗糙。

CNTs的管长在微米量级,管内径和管外径分别约为6nm和15nm。

由图1(b)~图1(f)可见,当Co3O4与CNTs复合后,Co3O4主要负载在CNTs的外表面,只有很少一部分Co3O4能够进入到CNTs管内。

绝大部分Co3O4都可以很好地分散在CNTs的外表面,Co3O4的聚集现象并不明显,而且Co3O4纳米粒子的粒径分布比较窄,粒径大小比较均一,说明CNTs可以很好地分散Co3O4纳米粒子。

随着制备过程中乙醇体积分数的减少,Co3O4纳米粒子的粒径逐渐增大,可能是因为乙醇的极性比水小,导致Co3O4表面吸附的乙醇分子减少,使得Co3O4更容易发生团聚[12]。

图1CNTs和Co3O4(X 

nm)/CNTs(X=5、6、11、13或22)的TEM照片

Fig.1TEMimagesofCNTsandCo3O4(X 

nm)/CNTs(X=5,6,11,13or22)

(a)CNTs;

(b)Co3O4(5nm)/CNTs;

(c)Co3O4(6nm)/CNTs;

(d)Co3O4(11nm)/CNTs;

(e)Co3O4(13nm)/CNTs;

(f)Co3O4(22nm)/CNTs

图2为CNTs和Co3O4(X 

nm)/CNTs的XRD谱。

由图2可见,单独的CNTs在25.7°

处出现了1个明显的尖峰,可归属为碳纳米管(002)晶面的特征衍射峰[13]。

当CNTs与Co3O4复合后,该特征衍射峰完全消失,表明CNTs的外表面覆盖了一层Co3O4纳米粒子,同时Co3O4(X 

nm)/CNTs复合材料中CNTs的质量分数只有20%,使得通过XRD很难检测到碳纳米管的信号。

2θ为19.0°

、31.2°

、36.8°

、44.8°

、59.3°

和65.2°

处出现了新的衍射峰,这些衍射峰可归属为具有尖晶石结构的Co3O4的特征峰(PDF#09-0418),分别对应于(111)、(220)、(311)、(400)、(511)和(440)晶面的衍射峰[14]。

随着Co3O4纳米粒子粒径的增大,Co3O4特征峰的强度逐渐增加,峰型更加尖锐,表明Co3O4的结晶度逐渐升高。

2.2电化学性能研究

图3为CNTs和Co3O4(X 

nm)/CNTs在50mV/s扫描速率下的循环伏安曲线和Co3O4(5nm)/CNTs在不同扫描速率下的循环伏安曲线。

由图3(a)可见,CNTs的循环伏安曲线出现了1对较弱的氧化还原峰,对应于电极材料中泡沫镍片的氧化还原峰[15]。

由图3(a)还可知,由于Co3O4的引入,所有的Co3O4(X 

nm)/CNTs复合材料电极均表现出典型的法拉第赝电容行为。

Co3O4(X 

nm)/CNTs的循环伏安曲线上均出现了2对准可逆的氧化还原峰,分别位于0.3V/0.19V和0.43V/0.33V附近,对应于Co3O4/CoOOH(II/III)以及CoOOH/CoO2(III/IV)之间的可逆转变,其电化学氧化还原反应如下所示[16-17]:

图2CNTs和Co3O4(X 

nm)/CNTs(X=5、6、11、13或22)

复合材料的XRD谱

Fig.2XRDpatternsofCNTsandCo3O4 

(X 

nm)/CNTs

(X=5,6,11,13or22)composites

Co3O4+OH-+H2O

3CoOOH+e

(1)

CoOOH+OH-

CoO2+H2O+e

(2)

图3CNTs和Co3O4(X 

nm)/CNTs(X=5、6、11、13或22)在50mV/s扫描速率下的循环伏安曲线和

Co3O4(5nm)/CNTs在不同扫描速率下的循环伏安曲线

Fig.3CyclicvoltammetrycurvesofCNTsandCo3O4(X 

nm)/CNTs(X=5,6,11,13or22)compositesatasweeprateof

50mV/sandCo3O4(5nm)/CNTsatdifferentsweeprates

(a)CNTsandCo3O4(X 

nm)/CNTscompositesatasweeprateof50mV/s;

(b)Co3O4(5nm)/CNTsatdifferentsweeprates

SCE—Saturatedcalomelelectrode

由图3(a)还可以看出,随着Co3O4粒径的增大,Co3O4(X 

nm)/CNTs复合材料电极的氧化、还原峰电流逐渐减小,循环伏安曲线包围的面积也越来越小,说明Co3O4粒径越小,Co3O4(X 

nm)/CNTs的比电容越高,电容特性越好。

小粒径的Co3O4纳米粒子具有更大的比表面积,参与反应的电化学活性位点增多,而且OH-离子嵌入与脱出时所受阻力较小,因此表现出更好的电化学活性[18]。

由图3(b)可知,随着扫描速率的增加,氧化、还原峰电流逐渐增大,氧化电位升高,还原电位降低,Co3O4(5nm)/CNTs循环伏安曲线没有发生明显的扭曲现象,表明电极在大电流下的极化现象并不严重,Co3O4(5nm)/CNTs复合电极具有较好的电化学可逆性[19]。

图4为CNTs和Co3O4(X 

nm)/CNTs在0.5A/g电流密度下的恒电流充、放电曲线和Co3O4(5nm)/CNTs在不同电流密度下的恒电流充、放电曲线。

由图4(a)可见,所有的Co3O4(X 

nm)/CNTs复合材料电极的恒电流充、放电曲线均有明显的平台,是典型的法拉第反应特征,恒电流充电曲线和放电曲线展示了较好的对称性和重现性,表明电极具有良好的循环可逆性。

随着Co3O4粒径的增加,Co3O4(X 

nm)/CNTs电极的恒电流放电时间逐渐缩短(放电时间分别为50.1s、269.7s、263.5s、225.5s、190.6s和123.1s)。

电极材料单电极比电容(C)可根据下式计算[20]:

建设高原特色农副产品现代物流园区,打造具有农垦特色、服务农业产业的现代物流产业体系和服务网络新格局;

完成了13个州(市)“好买卖”乡村新型商业中心建设工作,推动全省乡村现代农业新型经营体系建设,助力解决广大农民“买难、卖难”的问题,积极探索云南省农村商贸流通体系新模式新业态,达到了农产品“卖得快、卖得远、卖得好”的效果。

C=(I×

Δt)/(m×

ΔV)

(3)

图4CNTs和Co3O4(X 

nm)/CNTs(X=5、6、11、13或22)在0.5A/g电流密度下的恒电流充、放电曲线和

Co3O4(5nm)/CNTs在不同电流密度下的恒电流充、放电曲线

Fig.4Galvanostaticcharge-dischargecurvesofCNTsandCo3O4(X 

nm)/CNTs(X=5,6,11,13or22)composites

atacurrentdensityof0.5A/gandCo3O4(5nm)/CNTsatdifferentcurrentdensity

nm)/CNTscompositesatacurrentdensityof0.5A/g,

(1)CNTs;

(2)Co3O4(5nm)/CNTs;

(3)Co3O4(6nm)/CNTs;

(4)Co3O4(11nm)/CNTs;

(5)Co3O4(13nm)/CNTs;

(6)Co3O4(22nm)/CNTs;

(b)Co3O4(5nm)/CNTsatdifferentcurrentdensities

图5为CNTs和Co3O4(X 

nm)/CNTs在不同电流密度下的比电容。

由图5可见,随着电流密度的增大,所有电极的比电容都在逐渐降低。

这是由于大电流密度下OH-离子不能及时扩散到Co3O4内部,减少了发生氧化还原反应的电化学活性位点,导致比电容下降。

当电流密度为10A/g时,CNTs、Co3O4(5nm)/CNTs、Co3O4(6nm)/CNTs、Co3O4(11nm)/CNTs、Co3O4(13nm)/CNTs和Co3O4(22nm)/CNTs电极的比电容保持率分别为92.0%、90.2%、88.9%、88.1%、88.0%和86.1%。

Co3O4纳米粒子的粒径越小,Co3O4(X 

nm)/CNTs的比电容保持率越高,Co3O4(5nm)/CNTs的比电容保持率十分接近单独的CNTs,说明该复合电极具有非常好的倍率特性和优良的电化学活性。

图6为CNTs和Co3O4(X 

nm)/CNTs的交流阻抗图,横坐标Z′代表阻抗实部,纵坐标Z″代表阻抗虚部。

由图6(a)可见,电极的Nyquist曲线由高频区域的半圆弧和低频区域的斜线两部分组成。

曲线与阻抗实部的交点代表电极的内阻,高频区域半圆对应于电荷的传递电阻,低频区域的斜线与电化学电容充电机理有关[21-22]。

由图6(b)中的高频部分放大图可见,随着Co3O4纳米粒子的粒径从5nm增加到22nm,Co3O4(X 

nm)/CNTs复合电极的内阻也相应从0.35Ω增大到0.43Ω,半圆弧代表的电荷传递电阻同样略有增加。

Co3O4(5nm)/CNTs复合电极的内阻和电荷传递电阻均最小,因此其比电容和比电容保持率最高。

Co3O4(5nm)/CNTs电极低频区与阻抗实轴45°

夹角是法拉第反应传质过程的特征,表明该电极是纯粹的法拉第赝电容特性。

CNTs低频区域的斜线与实轴几乎垂直代表了其双电层电容特性。

Co3O4(11nm)/CNTs、Co3O4(13nm)/CNTs和Co3O4(22nm)/CNTs电极低频区域斜线的斜率介于Co3O4(5nm)/CNTs和CNTs之间,而且斜率逐渐增大,表示这3种电极同时具备了法拉第赝电容和双电层电容2种电容能力,并且电容特性逐渐从法拉第赝电容向双电层电容转变。

图5CNTs和Co3O4(X 

在不同电流密度下的比电容(C)

Fig.5Thespecificcapacitance(C)ofCNTsand

compositesatdifferentcurrentdensities

图6CNTs和Co3O4(X 

nm)/CNTs(X=5、6、11、13或22)的交流阻抗图

Fig.6TheNyquistplotsoftheelectrochemicalimpedancespectraofCNTsandCo3O4(X 

(a)ElectrochemicalimpedancespectraofCNTsandCo3O4 

nm)/CNTs;

(b)Theexpandedhigh-frequencyregionofthepartialplotsin(a)

图7为Co3O4(5nm)/CNTs电极在0.5A/g电流密度下的循环性能。

由图7可见,Co3O4(5nm)/CNTs复合电极在最初的500次充、放电循环过程中比电容不仅没有下降,反而略微上升,说明电极存在一个活化诱导过程。

500~2000次充、放电循环过程中Co3O4(5nm)/CNTs电极的比电容完全没有下降,一直稳定在220F/g左右,和最初的比电容相比增加了6%。

CNTs对Co3O4的分散和材料导电性的提高是Co3O4(5nm)/CNTs具有高比电容和优异稳定性的重要原因[11]。

循环寿命实验表明,Co3O4(5nm)/CNTs电极的充、放电稳定性非常高,是一个潜在的十分优秀的超级电容器电极材料。

图7Co3O4(5nm)/CNTs电极在0.5A/g

电流密度下的循环性能

Fig.7CyclingperformanceofCo3O4(5nm)/CNTs

electrodeatacurrentdensityof0.5A/g

3结论

(1)利用水热法通过调控水与乙醇的体积比,合成了具有不同Co3O4粒径的Co3O4/CNTs复合材料(Co3O4(X 

nm)/CNTs),Co3O4粒径范围为5~22nm,而且Co3O4纳米粒子主要分散在CNTs的外表面。

(2)Co3O4粒径越小,参与反应的电化学活性位点越多,Co3O4/CNTs的比电容越高,电容特性越好。

Co3O4(5nm)/CNTs电极在0.5和10A/g电流密度下的比电容分别为207.5和187.1F/g,比电容保持率约为90.2%。

(3)随着Co3O4粒径的增加,Co3O4(X 

nm)/CNTs复合电极的内阻和电荷传递电阻略微增大,电容特性逐渐从法拉第赝电容向双电层电容转变。

(4)Co3O4(5nm)/CNTs电极在0.5A/g电流密度下2000次充、放电循环过程中比电容不降反升,一直稳定在220F/g左右,表明该电极具有优良的电化学可逆性和稳定性以及较高的比电容,是一个潜在的优秀的超级电容器电极材料。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1