FRIPP润滑油异构脱蜡技术进展Word下载.docx

上传人:b****6 文档编号:19981853 上传时间:2023-01-13 格式:DOCX 页数:12 大小:120.40KB
下载 相关 举报
FRIPP润滑油异构脱蜡技术进展Word下载.docx_第1页
第1页 / 共12页
FRIPP润滑油异构脱蜡技术进展Word下载.docx_第2页
第2页 / 共12页
FRIPP润滑油异构脱蜡技术进展Word下载.docx_第3页
第3页 / 共12页
FRIPP润滑油异构脱蜡技术进展Word下载.docx_第4页
第4页 / 共12页
FRIPP润滑油异构脱蜡技术进展Word下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

FRIPP润滑油异构脱蜡技术进展Word下载.docx

《FRIPP润滑油异构脱蜡技术进展Word下载.docx》由会员分享,可在线阅读,更多相关《FRIPP润滑油异构脱蜡技术进展Word下载.docx(12页珍藏版)》请在冰豆网上搜索。

FRIPP润滑油异构脱蜡技术进展Word下载.docx

1.1异构脱蜡技术应用

Chevron公司的异构脱蜡技术Isodewax在1993年问世以来,已在包括中国石化和中国石油在内的20多家公司进行了技术转让,总处理能力为8.0Mt/a以上。

ExxonMobil公司的MSDW技术也有10套装置在使用。

FRIPP自从1999年成功开发出第1代异构脱蜡一来(FIDW工艺),现在已经开发出第3代异构脱蜡技术(WSI工艺),已经在金陵石化分公司、齐鲁石化分公司、江苏红叶石化公司和海南汉地阳光石化有限公司等4套工业装置上成功应用,总处理能力0.7Mt/a。

1.2异构脱蜡技术依据

作为异构脱蜡原料的润滑油馏分中的蜡组分主要由正构的和终端有轻度分支的C16-C36长链烷烃组成[9],烃的异构程度与支链的位置对凝点和粘度指数的影响见图1.1。

图1.1支链位置和结果对凝点和粘度指数的影响

1.3异构脱蜡反应机理

随着评价和表征手段的发展,关于大分子异构化反应,目前已经提出了一些反应机理,其中被普遍接受的主要有正碳离子机理、择形催化机理和孔嘴(Poremouth)/锁匙(Key-Lock)反应机理。

1.3.1正碳离子机理[10-12]

一般认为,异构反应遵循正碳离子机理。

即在双功能催化剂上发生的反应,在反应中正构烷烃首先在催化剂的金属中心上脱氢生成相应的烯烃,此种烯烃迅速转移到酸性中心上得到1个质子生成正碳离子,生成的正碳离子极其活泼,只能瞬时存在,正碳离子一旦形成就迅速进行下列反应:

异构化反应,即正碳离子通过氢原子或甲基转移并进行重排,使正碳离子的稳定度提高,在金属中心上脱氢形成环丙烷正碳离子(PCP)中间体,然后断键形成异构稀烃中间体,从酸性中心脱附,再在加氢中心上加氢得到与原料分子碳数相同的异构烷烃。

同样该分子可以相继形成双支链和多支链的正碳离子,进而发生裂化反应。

1.3.2择形催化机理[13,14]

择形催化化学是将化学反应与分子筛的吸附及扩散特性相结合的科学,通过它可以改变已知反应途径及产物的选择性。

传统的择形催化理论主要体现在分子筛效应、传质选择性和过渡态选择性等方面。

在择形催化中分子筛效应体现为反应物选择性或产物选择性,只有能进入载体孔道并与孔道内的活性中心接触的分子才能作为反应物,而大于分子筛孔径的分子将被排斥于孔道之外,这所显示的就是反应物的选择性(图1.2);

而在孔道中形成的较大分子,或平衡转化为较小分子逸出,或就地堵塞孔道最后导致催化剂失活,这显示的就是产物的选择性(图1.3)。

在择形催化中过渡状态的选择性体现在当反应物及产物分子能在孔道内扩散,但生成最终产物所需的过渡态(反应中间物)较大时,由于反应中间物的大小或定向需要较大的空间,而分子筛孔道内的有效空间却很小,无法提供所需的空间,则在分子筛孔道内不能形成过渡态,此时反应也不能进行,从而反应表现为过渡状态选择性(图1.4)。

图1.2反应物选择性1.3产物选择性1.4约束过渡态选择性

这些传统的理论在很多方面都很好地介绍了分子筛的结构和反应性能之间的关系,对分子筛催化剂的研究和发展提供了重要依据,但对于异构脱蜡反应,由于其机理认为是通过质子化的环丙烷中间体,

该中间体具有较大的动力学直径,根据过渡态选择性,很难在分子筛的孔道内发生,所以传统的理论在解释大分子烷烃异构化例如异构脱蜡方面遇到一定的困难。

1.3.3孔嘴和锁匙反应机理[15]

随着对大分子异构化反应认识的深入,Martens等在研究正十七烷在Pt/ZSM-22上的临氢反应结果的基础上提出了孔口催化概念。

他们认为,在单侧链化反应中,反应物分子并没有穿过孔道,而是部分插入分子筛孔道内,骨架异构化反应发生在吸附于孔口和分子筛外表面的分子上,当单侧链分子的一端吸附在一个分子筛晶体的孔道时,若反应物的链足够长,反应物分子链的另一端还可以进入相邻的分子筛晶体的孔道内并发生异构化反应,这种机理被称为锁匙催化,该理论较好地解释了长链烷烃分子的异构化产物分布。

1.4异构脱蜡催化剂设计

以上异构脱蜡反应的各种机理表明,异构化反应总是有加氢裂化反应伴随发生,因此,多少会降低异构产物的收率。

已经证明正构烷烃先发生异构化反应产生单支链烷烃,进而生成多支链烷烃,该烃比较活泼,裂化反应随后发生。

单支链烷烃不如多支链链烷烃对裂化反应敏感。

因此,为了减少裂化反应,必须限制多支链的生成[16]。

大量研究工作表明,异构烷烃的选择性主要决定于金属和酸功能的匹配[17-19]。

催化剂的酸量主要影响加氢异构和加氢裂化收率。

酸中心密度和酸强度分布非常重要,这些变量的合理匹配决定双功能催化剂的反应性能和选择性。

分子筛的孔口对催化剂的选择性也有较大影响。

若孔口足够小可以限制较大的异构烷烃与孔内的酸中心发生反应,催化剂会表现出良好的异构化选择性[20]。

抚顺石化研究院对异构脱蜡反应机理、催化材料物化性质的调控和催化剂的设计有了深入和详实的认识和掌握,在此基础上,于1999年成功开发出第1代异构脱蜡技术(FIDW-1),2001年开发出第2代异构脱蜡技术(FIDW-10),2003年成功开发了第3代异构脱蜡技术(WSI技术),该技术于2004年11月通过中国石化股份有限公司技术开发部主持的技术鉴定,并荣获中国石化集团公司科技进步3等奖。

该技术可用于各种压力等级的异构脱蜡生产高档润滑油基础油的工艺过程,具有活性和选择性高、产品质量好、目的产品收率高以及催化剂稳定性好等特点。

该技术已经获得美国和加拿大专利授权,申报中国专利30多项(其中已获授权21项),具有完全独立自主知识产权。

该技术的成功开发不仅对打破国际技术垄断和技术封锁,而且对提高我国白油、润滑油和特种油产品质量,加快我国特种油的升级换代,提高我国特种油的国际竞争能力都具有重要意义。

2催化剂制备及评价

2.1催化剂制备

选用三种不同类型的分子筛(Z-a、Z-b和Z-c)通过FRIPP专有技术制备出3个催化剂,编号分别为,C/Z-a、C/Z-b和C/Z-c。

2.2催化剂评价

在对催化剂反应性能评价时,采用几种具有代表性的工业原料(主要性质见表2.1)为进料,在200mL固定床小型加氢装置上进行。

表2.1原料油主要性质

项目

原料1

原料2

原料3

原料4

粘度(50℃)/(mm2.s-1)

14.14

15.00

16.40

22.57

粘度(100℃)/(mm2.s-1)

4.365

4.596

5.022

5.39

倾点/℃

35

37

40

55

硫/(μg.g-1)

8.0

1.0

4.1

15.4

氮/(μg.g-1)

蜡含量,%

18.5

23.48

20.1

31.3

馏程/℃

IBP/10%

378.5/390.0

380.3/403.6

404.7/418.9

423.6/440.2

30%/50%

406.9/423.4

416.8/428.0

426.0/435.8

454.8/466.5

70%/90%

444.2/483.4

444.1/476.4

456.7/494.6

478.2/508.7

95%/EBP

502.9/520.2

491.8/510.4

511.1/530.4

526.4/548.0

3催化剂性能及工业应用

3.1不同分子筛催化剂的反应性能

使用原料1,对不同分子筛催化剂的性能进行评价,评价结果分别见表3.1。

表3.1中试评价条件及结果

催化剂

C/Z-a

C/Z-b

C/Z-c

温度/℃

370

280

320

C5+液收,%

97.8

79.2

94.5

基础油收率,%

66.4

65.6

78.0

基础油性质

粘度(40℃)/(mm·

s-2)

36

25.1

112

110

124

-21

-19

注:

操作条件为压力6.0MPa,体积空速1.0h-1,氢油体积比800。

从表3.1可看出,不同分子筛催化剂在活性、选择性和产品的性质方面都具有显著的不同,当控制产品(润滑油基础油)的倾点为-20℃左右时,C/Z-b的反应温度比C/Z-a低90℃,说明C/Z-b的活性最高,C/Z-a的活性最低,C/Z-c的活性居中。

但是C/Z-c的基础油收率比前两者高20%,粘度指数也比前2者高10多个单位达到120以上。

这是由于不同类型的分子筛,具有不同的酸性和孔道结构,在异构脱蜡中具有不同的表现,上面的结果显示,沸石Z-c是异构脱蜡催化剂合适的酸性组分。

3.2与其它催化剂结果对比

采用原料4,催化剂C/Z-c与参比催化剂的评价结果见表3.2。

表3.22种催化剂的评价结果

原料

4

参比剂

氢分压/MPa

3.0

12.0

反应温度/℃

325

330

340

体积空速/h-1

氢油体积比

800

液体收率,%

96.1

97.0

97.1

83.7

84.1

83.8

>

352℃馏分主要性质

粘度(40℃)/(mm2.s-1)

31.55

31.71

29.00

粘度(100℃)/(mm2.s-1)

5.70

5.69

5.25

123

122

113

-18

从表3.2结果可见,采用同样的原料,在相近的工艺条件(温度不同),产物的液收接近,均为97%左右,基础油倾点均为-18℃条件下,与参比剂相比,C/Z-c催化剂的反应温度低10℃,基础油收率提高0.3%,粘度指数提高9个单位,达到120以上。

另外,从表3.2的结果可以发现,新开发的催化剂在低压和高压条件下都得到了优异的结果。

3.3对原料的适应性

催化剂对原料的适应性也是催化剂性能的重要指标,好的催化剂不仅要求对某1种原料具有很好的催化性能,而且要求适合于加工不同性质的原料,为炼厂提供更大的操作灵活性和效益最大化。

本工作选择了原料2和原料3为原料(主要性质见表2.1),考察了催化剂C/Z-c对原料的适应性,结果见表3.3。

表3.3对原料的适应性

原料油

2

3

95.12

95.26

82.8

83.1

基础油主要性质

粘度(40℃)/(mm2.s-1)

26.38

30.78

粘度(100℃)/(mm2.s-1)

5.08

5.54

121

从表3.1、表3.2和表3.3的结果可以看出,实验室开发的催化剂C/Z-c不仅对于较低蜡含量及较低硫含量的原料1具有很高的催化性能,而且对于硫或蜡含量较高的原料2、原料3和原料4同样都得到很好的结果。

说明催化剂对不同性质的原料具有很强的适应性,保证了工业操作的灵活性。

3.4催化剂稳定性

在温度325℃,体积空速1.0h-1,压力12.0MPa下,用原料3对催化剂C/Z-c的稳定性进行了考察,结果见图3.1。

图3.1催化剂稳定性考察

图中,用基础油收率来表示选择性,基础油倾点对原料油降低的温度表示活性。

从图3.1可以看出催化剂连续运转3600h,催化反应的活性几乎没有降低,而选择性提高近2.0%。

稳定性考察结果显示,催化剂的稳定性能良好,能够满足工业装置长周期运转的要求。

3.5工业试验

3.5.1金陵石化分公司异构脱蜡装置

FRIPP开发的异构脱蜡技术(WSI工艺)于2004年12月在中国石化金陵分公司成功工业应用,生产出低倾点、高粘度指数的润滑油基础油和白油料等特种油品,处理能力为120kt/a,具体的运转情况见表3.4。

表3.4金陵分公司异构脱蜡运转情况

一套加氢裂化尾油

二套加氢裂化尾油

原料性质

密度(20℃)/(kg.m-3)

825

862.8

馏程范围/℃

361~485

394~509

3.28

5.21

氮/(µ

g.g-1)

1.4

1.3

硫/(µ

7

6.5

31

12

蜡含量,%

21.2

15.6

工艺条件

高分压力/MPa

3.1

850

750

装置液收

95.46

98.7

润滑油收率

81.26

96.5

产品性质

VI

101

-24

装置稳定运行6a,处理1套加氢裂化尾油,在1.0h-1、平均反应温度330℃,反应温升为17℃左右。

处理2套加氢裂化尾油,在进料量为1.0h-1、平均反应温度320℃,反应温升为8℃左右,基础油收率达到96.5%。

6年的具体运行情况采集数据见图3.2。

图3.2金陵分公司低压异构脱蜡装置6a具体运行情况

3.5.2齐鲁分公司异构脱蜡装置

FRIPP开发的WSI工艺于2008年4月27日在中国石化齐鲁分公司成功工业应用,处理能力为28万吨/年,截止到目前,连续近3a,运转情况良好,具体的运转情况见表3.5。

表3.5齐鲁分公司异构脱蜡装置运转情况

项目

结果

原料油性质

密度(20℃)/(kg.m-3)

833.6

1.2

3.773

反应器入口压力/MPa

500

2.0

液收,%

96.17

33

润滑油基础油收率,%

82.55

馏程(D1160)/℃

7.755

252/347

119

50%/90%

402/466

干点

502

3.5.3海南汉地阳光石油化工有限公司异构脱蜡装置

FRIPP开发的WSI工艺于2011年1月2日在海南汉地阳光石油化工有限公司成功工业应用,处理能力为250kt/a,该装置是采用高压异构脱蜡-补充精制的全加氢工艺生产符合APIII和APIIII类润滑油基础油,催化剂的评价结果见表3.6。

表3.6海南汉地阳光催化剂活性评价结果

800:

1

352℃馏分性质

粘度/(mm2·

s-1)

氢分压/Mpa

14.0

40℃

35.49

100℃

5.87

96.25

基础油(>

352℃)收率,%

83.27

-15

4结论

(1)FRIPP开发的异构脱蜡技术(WSI工艺),具有异构化活性和选择性高,稳定性好、对原料适应性强等特点。

(2)WSI技术能够在各种压力等级下生产高质量润滑油基础油,工业运转结果表明该催化剂的稳定性优于国际同类催化剂水平。

(3)该技术成功开发不仅填补了我国在异构脱蜡生产高档润滑油技术领域的空白,并创造了巨大的社会和经济效益。

参考文献

[1]侯芙生,发展高档润滑油提高我国润滑油竞争实力,当代石油石化。

2004,12(6):

5-11。

[2]屈清洲,徐丽秋,中国石油润滑油基础油生产技术现状及发展润滑油.润滑油.2003,18

(1):

1-6。

[3]高滋主编,沸石催化与分离技术.第一版,北京:

中国石化出版社,1999:

190-205。

[4]祖德光,国内外润滑油基础油生产技术.石油商技.2003,21(5):

2-7。

[5]安军信,刘霞,国外Ⅱ类/Ⅲ类润滑油基础油生产工艺路线概述.润滑油.2004,19(4):

10-16。

[6]祖德光,润滑油加氢工艺的新进展.炼油技术与工程.2004,34

(2):

1-5。

[7]王玉章,祖德光,王子军,加氢法生产APIⅡ类和Ⅲ类基础油.润滑油.2005,20

(2):

15-20。

[8]张志娥,国内外润滑油基础油生产技术及发展趋势,当代石油石化。

2005,13(4):

25-30。

[9]TaylorRJ,McCormackAJ.Studyofsolventandcatalyticlubeoildewaxingbyanalysisoffeedstocksandproducts.IndEngChemRes,1992,31:

1731-1738.

[10]MillsGA,HeinemannH,MillikenTA.(HoudriformingReactions)Catalyticmechanism.A.G.Oblad.IndEngChemRes,1953,45:

134.

[11]WeiszPB,SweglerEW.Stepwisereactiononreparatecatalyticcenters:

isomerizationofsaturatedhydrocarbons.Science,1957,126:

31-32.

[12]MartensJA,TielenM,JacobsP.A,Stud.Surf.Sci.Catal.1989,46:

49

[13]陈猷元,等.择形催化在工业中的应用.谢朝钢译.北京:

中国石化出版社,1992:

148。

[14]中国科学院大连化物所分子筛组,沸石分子筛.北京:

科学出版社,1978:

104。

[15]ClaudeM.C.,MartensJ.A.,Monomethyl-branchingoflong-chainn-alkanesintherangefromdecanetotetracosaneonPt/H-ZSM-22bifunctionalcatalyst.JournalofCatalysis.2000,190:

39-48.

[16]MartensJA,JacobsPA,WeitkampJ.Attemptstorationalizethedistributionofhydrocrackedproducts.Iqualitativedescriptionoftheprimaryhydrocrackingmodesoflongchainparaffinsinopenzeolites.J.Appl.Catal.1986,20:

239-281.

[17]GengCH,ZhangF,GaoZX,ZhouLF,ZhouJL.Hydroisomerizationofn-tetradecaneoverPt/SAPO-11catalyst.Catal.Today2004,93/95:

485-491.

[18]ParkKC,IhmSK.ComparisonofPt/zeolitecatalystsforn-hexadecanehydroisomerization.Appl.Catal.A.2001,203:

201-209.

[19]GalperinLB,BradleySA.T.M.Mezza,Hydroisomerizationofn-decaneinthepresenceofsulfur:

Effectofmetal–acidbalanceandmetallocation.Appl.Catal.A.2001,219:

79-88.

[20]TaylorRJ,PerryRH.Selectivehydroisomerizationoflongchainnormalparaffins.Appl.Catal.A.1994,119:

121-138.

TheProgressofFRIPPLubricatingOilIsodewaxingTechnology

LiuQuanjie,YaoChunlei,FangXiangchen

(FushunResearchInstituteofpetroleumandPetrochemicalsSINOPECFushun11

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 化学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1