原创版图像增强外文文献及翻译Word文档下载推荐.docx

上传人:b****5 文档编号:19919083 上传时间:2023-01-12 格式:DOCX 页数:12 大小:146.61KB
下载 相关 举报
原创版图像增强外文文献及翻译Word文档下载推荐.docx_第1页
第1页 / 共12页
原创版图像增强外文文献及翻译Word文档下载推荐.docx_第2页
第2页 / 共12页
原创版图像增强外文文献及翻译Word文档下载推荐.docx_第3页
第3页 / 共12页
原创版图像增强外文文献及翻译Word文档下载推荐.docx_第4页
第4页 / 共12页
原创版图像增强外文文献及翻译Word文档下载推荐.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

原创版图像增强外文文献及翻译Word文档下载推荐.docx

《原创版图像增强外文文献及翻译Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《原创版图像增强外文文献及翻译Word文档下载推荐.docx(12页珍藏版)》请在冰豆网上搜索。

原创版图像增强外文文献及翻译Word文档下载推荐.docx

(2)classeswithoutdistinctivegray-values,butwithsimilarareas.However,whenthegray-valuedifferencesamongclassesarenotsodistinct,andtheobjectissmallrelativetobackgroud,theseparabilitiesamongclassesareinsufficient.Inordertoovercometheaboveproblem,thispaperpresentsanimprovedspatiallow-passfilterwithaparameterandpresentsanunsupervisedmethodofautomaticparameterselectionforimageenhancementbasedonOtsumethod.Thismethodcombinesimageenhancementwithimagesegmentationasoneprocedurethroughadiscriminantcriterion.Theoptimalparameterofthefilterisselectedbythediscriminantcriteriongiventomaximizetheseparabilitybetweenobjectandbackground.Theoptimalthresholdforimagesegmentationiscomputedsimultaneously.Themethodisusedtodetectthesurfacedefectofcontainer.Experimentsillustratethevalidityofthemethod.

KEYWORDSimageprocessing;

automatedimageenhancement;

imagesegmentation;

automatedvisualinspection

1Introduction

Automatedvisualinspectionofcrackedcontainer(AVICC)isapracticalapplicationofmachinevisiontechnology.Torealizeourgoal,fouressentialoperationsmustbedealtwith–imagepreprocessing,objectdetection,featuredescriptionandfinalcrackedobjectclassification.Imageenhancementistoprovidearesultmoresuitablethanoriginalimageforspecificapplications.Inthispapertheobjectiveofenhancement,followedbyimagesegmentation,istoobtainanimagewithahighercontentabouttheobjectinterestingwithlesscontentaboutnoiseandbackground.Gonzalez[1]discussesthatimageenhancementapproachesfallintotwomaincategories,inthatspatialdomainandfrequencydomainmethods.Burton[2]appliesimageaveragingtechniquetofacerecognitionsystem,makingitabletorecognisefamiliarfaceseasilyacrosslargevariationsinimagequality.Centeno[3]proposesanadaptiveimageenhancementalgorithm,whichreversetheprocessingorderofimageenhancementandsegmentationinordertoavoidsharpeningnoiseandblurringborders.Munteanu[4]appliesartificialintelligencetechnologytoimageenhancementprovidingdenoisingfunction.Inadditiontospatialdomainmethods,frequencydomainprocessingtechniquesarebasedonmodifyingtheFouriertransformofanimage.Bakir[5]discussesimageenhancementusedformedicalimageprocessinginfrequencyspace.Besides,Wang[6]presentsaglobalmultiscaleanalysisofimagesbasedonHaarwavelettechniqueforimagedenoising.Recently,Agaian[7]proposesimageenhancementmethodsbasedonthepropertiesofthelogarithmictransformdomainhistogramandhistogramequalization.Weapplyspatialprocessinghereinordertoguaranteethereal-timeandsufficientaccuracypropertyofthesystem.

Segmentationisdiscussedin[8].Themostsimplest,representedbyOtsu[9],ismethodusingonlythegraylevelhistogramanalysistomaximizetheseparabilityoftheresultantclasses.Kuntimad[10]describesamethodforsegmentingdigitalimagesusingpulsecoupledneuralnetworks(PCNN).Salzenstein[11]dealswithacomparisonofrecentstatisticalmodelsonfuzzyMarkovrandomfieldsandchainsformultispectralimagesegmentation.Duetoill-defined,thereisnouniquesegmentationofanimage.Evaluationofsegmentationalgorithmsthusfarhasbeenlargelysubjective.Ranjith[12]demonstrateshowarecentlyproposedmeasureofsimilaritycanbeusedtoperformaquantitativecomparisonamongimagesegmentationalgorithms.

Inthispaper,wepresentanimprovedspatiallow-passfilterwithatunableparameterinthemaskmakingallelementsnolongersumtounity.Theoptimalparameterforthefiltercanbedeterminedbytheimproveddiscriminantcriterionbasedontheonementionedin[9].Convolvingimageswiththismask,thebackgrounduninterestingcanberemovedeasilyleavingtheobjectintacttosomeextent.Theremainderofthepaperisorganizedasfollows:

Sect.2presentshowtoenhanceaninputimageintheoryandpresentsthealgorithm.Sect.3illustratesthevalidityofthemethodinSect.2.Finally,conclusionanddiscussionarepresentedinSect.4.

2 ImageEnhancement

2.1AnalysisofPriorKnowledge

Thepreprocessingqualityinfluencesthelatterworkdirectly,inthat,featuredescription.Therefore,analysisforthecharacteristicsrelatedtoinputimagesshouldbepresented.AstandardimageofcrackedcontainerisshownasFig.1(a).Fromtheimage,weseethecrackedpartoccupiessmallregion.Muchnoise,suchasrust,shadow,smearetc,appearswithinthebackground.Atacoarseglance,however,wefindgrayleveloftheholeislessthantheotherpartsdistinctly.Furtherstudyshowsgraylevelofpixels,aroundtheedgeofthehole,istheminimal.Fig.1(b)displaysthehistogramofFig.1(a)andedgeoftheholeismarked.

Fig.1(a)isastandardgraylevelimageofacrackedcontainer(b)isthehistogramofFig.1(a),indicatinggraylevelregionofthehole’sedge.

2.2Formulation

Thissectiondiscussestheprincipalcontentinthepaper.Traditionalspatialfilterusesa3×

3mask,theelementsofwhichsumtounity,toconvolvewiththeinputimage.Thismethodcandealwithsomecasesshowninequation

(1):

(1)

where,Iisimageinterested,NisGaussianwhitenoise,(x,y)denoteseachpairofcoordinates.NcanbedeliminatedbyblurringG.Ourobjective,however,istodeliminatenotonlywhitenoise,butanyotherbackgrounduninteresting.Thusequation

(1)isimprovedbyequation

(2):

(2)

where,I'

istheobject,N'

consistsofwhitenoiseandtheotherpartsexceptI'

.Fig.2(c)displaysanimprovedmaskwithaparameterPara.WewilllaterillustratethattuningParaproperlyistofacilitateobjectsegmentation.Thesmoothingfunctionusedisshowninequation(3):

(3)

where,F(x,y)denotesthesmoothingfilter,inthat,themaskshownasFig.2(c).

Now,weonlyconsidergray-levelimages,anddefineMgasthemaximumgraylevelofanimage.Thenthefollowingequationsaresettodistinguishtheobjectofinterestandthenon-object:

(4)

Inessence,convolutionoperatorisalow-passfilteringprocess,whichblursanimagebyslidingamaskthroughtheimageandleavesthefilteringresponseatthepositioncorrespondingtocentrallocationofthemask.Onequestionoccursthat,whynotenhancevalueofeachpixelbythesamescaledirectlyforthedistinctgraylevelsbetweentheobjectandbackground.Thereasonisthatitdoesn’tconsidertherelationshipofadjacentpixels.Whenindividualnoisepointoccur,enhancingitsgrayvaluedirectlywillpreservethenoisepoint.Experimentsillustratethelattermethodwillleavelotsofnoisepointscan’tberemoved,buttheformermethodwillnot.

Now,wewillsearchtheoptimalparameterParasoastomaximizetheseparabilitybetweenobjectandbackground.LetagivenimageberepresentedinLgraylevels.ThenumberofpixelsatleveliisdenotedbyniandthetotalnumberofpixelsbyN.TheprobabilityofeachlevelisdenotedbyPiasfollow[9]:

(5)

SupposethatwepartitionthepixelsintotwoclassesC0andC1(objectandbackground)byathresholdatlevelk;

C0denotespixelswithlevels[1,…,k],andC1denotespixelswithlevels[k+1,…,L].Thentheprobabilitiesofclassoccurrencew0,w1andtheclassmeanlevelsu0,u1respectively,aregivenby

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Theprocedureofobtainingoptimalparaisbasedonobtainingoptimalthresholdforeveryfilteredimage.Theoptimalthresholdisdeterminedbymaximizingtheseparabilitybetweenobjectandbackgroundusingthefollowingdiscriminantcriterionmeasureasmentionedin[9]:

(13)

where

(14)

and

arethebetweenclassvarianceandthetotalvarianceoflevels,respectively.

(15)

Theoptimalthresholdk*thatmaximizesnisselectedinthefollowingsequentialsearchbyusingequation(5)-(14):

(16)

Equation(16)isadiscriminantcriteriontoselectthegrayleveltomaximizetheseparabilitybetweenobjectandbackgroundforagivenpicture.Inthispaper,aparameterParaisintroduced,sotheequations(6)~(9),(11)~(14),(16)isparameterizedbyParaandkandequations(10),(15)isparameterizedbyPara.Equation(13)canberewrittenas:

(17)

Where

isnotaconstantanymoreandisnotnegligible,butsomecomputationreductioncanbeoperatedon

Here,whatwewanttoacquireistheproperfilteredpictureincludingvividobjectbysearchingparameterPara,thediscriminantcriterionusedisimprovedasfollow:

(18)

Intheaboverepresentation,parameterParaplaysanimportantrole,becauseoptimalParamakestheseparabilitybetweenobjectandbackgroundmaximal,andmakeOtsusegmentationmethodeffectivetosegmentsmallobjectfromlargebackgroundwithoutdistinctivegray-valuebetweenthem,whichcanbeobservedlaterfromimagehistogramafterimageenhancement

2.3ExistenceDiscussionofParaandk*

Theproblemaboveisreducedtosearchforathresholdk*undertheconditionofParawhichmaximizesthediscriminantcriterioninequation(18).Theconditiondiscussedistheimagewithtwoclassatleast.Subsequently,thefollowingtwocasesdon’toccur,inthat,

(1)w0orw1iszerooriginallywithoutsettingPara,inwhichthereisonlyoneclass;

(2)w0orw1iszerowithcertainincreasingPara,inwhichthereisalsooneclassfinally;

Theabovetwocasesaredecribedas:

ThecaseconcernedisA,Thus,thereiscertainParawithproperktomakediscriminantcriterionmaximal.

3Experiments

Thispaperaimsat

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1