正方形基础专题练习培训课件Word文档格式.docx
《正方形基础专题练习培训课件Word文档格式.docx》由会员分享,可在线阅读,更多相关《正方形基础专题练习培训课件Word文档格式.docx(29页珍藏版)》请在冰豆网上搜索。
四边形A′B′C′D′是正方形.
11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.
12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.
(1)当DG=2时,求证:
菱形EFGH为正方形;
(2)设DG=x,试用含x的代数式表示△FCG的面积.
13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.
(1)求证:
BF=DE;
(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?
说明理由.
14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;
并加以证明;
(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.
16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:
四边形PQMN是正方形.
17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?
18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.
AF﹣BF=EF;
(2)四边形EFGH是什么四边形?
并证明;
(3)若AB=2,BP=1,求四边形EFGH的面积.
19.如图,△ABC中,∠C=90°
,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?
请说明理由.
20.如图,在△ABC中,∠BAC=90°
,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:
四边形DEAF是正方形.
19.3.2正方形的判定与性质
参考答案与试题解析
一.选择题(共5小题)
A.有一个角为直角的菱形是正方形
B.有一组邻边相等的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线相等且互相垂直的四边形是正方形
考点:
正方形的判定.
分析:
正方形:
四个角都是直角,四条边都相等,对角线相等,且互相垂直平分的平行四边形;
菱形:
四条边都相等,对角线互相垂直平分的平行四边形;
矩形:
四个角都相等,对角线相等的平行四边形.
解答:
解:
A、有一个角为直角的菱形的特征是:
四条边都相等,四个角都是直角,则该菱形是正方形.故本选项说法正确;
B、有一组邻边相等的矩形的特征是:
四条边都相等,四个角都是直角.则该矩形为正方形.故本选项说法正确;
C、对角线相等的菱形的特征是:
四条边都相等,对角线相等的平行四边形,即该菱形为正方形.故本选项说法正确;
D、对角线相等且互相垂直的平行四边形是正方形.故本选项说法错误;
故选D.
点评:
本题考查了正方形的判定.正方形集矩形、菱形的性质于一身
,是特殊的平行四边形.
2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有( )
A.1个B.2个C.4个D.无穷多个
正方形的判定与性质;
全等三角形的判定.
专题:
计算题.
在正方形四边上任意取点E、F、G、H,若能证明四边形EFGH为正方形,则说明可以得到无穷个正方形.
无穷多个.如图正方形ABCD:
AH=DG=CF=BE,HD=CG=FB=EA,∠A=∠B=∠C=∠D,
有△AEH≌△DHG≌△CGF≌△BFE,
则EH=HG=GF=FE,
另外很容易得四个角均为90°
则四边形EHGF为正方形.
本题考查了正方形的判定与性质,难度适中,利用三角形全等的判定证明EH=HG=GF=FE.
,DE⊥AB,若四边形ABCD面积为16,则DE的长为( )
A.3B.2C.4D.8
正方形的判定与性质.
证明题.
如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°
,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.
过点D作BC的垂线,交BC的延长线于F,
∵∠ADC=∠ABC=90°
,∠CDF+∠EDC=90°
,
∴∠A=∠FCD,
又∠AED=∠F=90°
,AD=DC,
∴△ADE≌△CDF,
∴DE=DF,
S四边形ABCD=S正方形DEBF=16,
∴DE=4.
故选C.
本题运用割补法,或者旋转法将四边形ABCD转化为正方形,根据面积保持不变,来求正方形的边长.
A.2cm,2cm,2cmB.3cm,3cm,3cmC.4cm,4cm,4cmD.2cm,3cm,5cm
连接OA,OB,OC,利用角的平分线上的点到角的两边的距离相等可知△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,
∴BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,∴AB=8﹣CD+6﹣CD=10,解得CD=2,所以点O到三边AB、AC、BC的距离为2.
连接OA,OB,OC,则△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,
∴BD=BF,CD=CE,AE=AF,
又∵∠C=90,OD⊥BC于D,OE⊥AC于E,且O为△ABC三条角平分线的交点
∴四边形OECD是正方形,
则点O到三边AB、AC、BC的距离=CD,
∴AB=8﹣CD+6﹣CD=﹣2CD+14,又根据勾股定理可得:
AB=10,
即﹣2CD+1
4=10
∴CD=2,
即点O到三边AB、AC、BC的距离为2cm.
故选A
本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系.
平方厘米)( )
A.40B.25C.26D.36
设小正方形的边长为a,大正方形的边长为b,由正方形的面积公式,根据题意列出方程组解方程组得出大正方形的边长,则可求出面积.
设小正方形的边长为a,大正方形的边长为b,
由这三张纸片盖住的总面积是24平方厘米,可得ab+a(b﹣a)=24①,
由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b﹣a)2=
a2﹣3,②
将①②联立解方程组可得:
a=4,b=5,
∴大正方形的边长为5,
∴面积是25.
故选B.
本题考查了正方形的性质及面积公式,难度较大,关键根据题意列出方程.
角画线,将正方形纸片分成5部分,则阴影部分是 正方形 (填写图形的形状)(如图),它的一边长是
cm .
压轴题.
延长小正方形的一边交大正方形于一点,连接此点与距大正方形顶点8cm处的点,构造直角边长为8的等腰直角三角形,将小正方形的边长转化为等腰直角三角形的斜边长来求解即可.
如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,
∴△ABC为直角边长为8cm的等腰直角三角形,
∴AB=
AC=8
∴阴影正方形的边长=AB=8
cm.
故答案为:
正方形,
本题考查了正方形的性质与勾股定理的知识,题目同时也渗透了转化思想.
,则另一直角边AE的长为 10 .
全等三角形的判定与性质;
勾股定理.
首先过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,易得四边形EMON是正方形,点A,O,D,E共圆,则可得△OEN是等腰直角三角形,求得EN的长,继而证得Rt△AOM≌Rt△DON,得到AM=DN,继而求得答案.
过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,
∵∠AED=90°
∴四边形EMON是矩形,
∵正方形ABCD的对角线交于点O,
∴∠AOD=90°
,OA=OD,
∴∠AOD+∠AED=180°
∴点A,O,D,E共圆,
∴
=
∴∠AEO=∠DEO=
∠AED=45°
∴OM=ON,
∴四边形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=8
∴EN=8,
∴EM=EN=8,
在Rt△AOM和Rt△DON中,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN﹣ED=8﹣6=2,
∴AE=AM+EM=2+8=10.
10.
此题考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是 3
.
全等三角形的判定与性质.
过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形
,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.
如图,过点D作DE⊥DP交BC的延长线于E,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°
,∠ADC=90°
∴∠ADP+∠CDP=90°
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°
∴∠APD=∠E=90°
在△ADP和△CDE中,
∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=
=3
.
3
本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.
9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:
⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 C
菱形的判定与性质;
矩形的判定与性质.
根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形
为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.
A、由①④得,一组邻边相等的矩形是正方形,故正确;
B、由③得,四边形是平行四边形,再由①,一组邻边相等的平
行四边形是菱形,故正确;
C、由①②不能判断四边形是正方形;
D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.
此题用到的知识点是:
矩形、菱形、正方形的判定定理,如:
一组邻边相等的矩形是正方形;
对角线互相平分且一组邻边相等的四边形是菱形;
对角线互相平分且一个角是直角的四边形是矩形.灵活掌
握这些判定定理是解本题的关键.
依据三角形的内角和定理可以判定四边形A′B′C′D′的三个角是直角,则四边形是矩形,然后证明一组邻边相等,可以证得四边形是正方形.
证明:
在正方形ABCD中,
∵在△ABF和△BCG中,
∴△ABF≌△BCG(SAS)
∴∠BAF=∠GBC,
∵∠BAF+∠AFB=90°
∴∠GBC+∠AFB=90°
∴∠BB′F=90°
∴∠A′B′C′=90°
∴同理可得∠B′C′D′=∠C′D′A′=90°
∴四边形A′B′C′D′是矩形.
∵在△AB′B和△BC′C中,
∴△AB′B≌△BC′C(AAS),
∴AB′=BC′
∵在△AA′E和△BB′F中,
∴△AA′E≌△BB′F(AAS),
∴AA′=BB′
∴A′B′=B′C′
∴矩形A′B′C′D′是正方形.
本题考查了正方形的判定,判定的方法是证明是矩形同时是菱形.
线段垂直平分线的性质.
探究型.
猜想:
线段DF垂直平分线段AC,且DF=
AC,过点M作MG∥AD,与DF的延长线相交于点G,作GH⊥BC,垂足为H,连接AG、CG.根据正方形的性质和全等三角形的证明方法证明△AMG≌△CHG即可.
AC,
证明:
过点M作MG∥AD,与DF的延长线相交于点G.
则∠EMG=∠N,∠BMG=∠BAD,
∵∠MEG=∠NED,ME=NE,
∴△MEG≌△NED,
∴MG=DN.
∵BM=DN,
∴MG=BM.
作GH⊥BC,垂足为H,连接AG、CG.
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=∠B=∠ADC=90°
∵∠GMB=∠B=∠GHB=90°
∴四边形MBHG是矩形.
∵MG=MB,
∴四边形MBHG是正方形,
∴MG=GH=BH=MB,
∠AMG=∠CHG=90°
∴AM=CH,
∴△AMG≌△CHG.
∴GA=GC.
又∵DA=DC,
∴DG是线段AC的垂直平分线.
∵∠ADC=90°
,DA=DC,
∴DF=
AC
即线段DF垂直平分线段AC,且DF=
AC.
本题综合考查了矩形的判定和性质、正方形的判定和性质,垂直平分线的判定和性质,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题以及敢于猜想的能力.
菱形的性质.
(1)由于
四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°
,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°
,易证四边形HEFG为正方形;
(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得.
(1)证明:
在△HDG和△AEH中,
∵四边形ABCD是正方形,∴∠D=∠A=90°
∵四边形EFGH是菱形,
∴HG=HE,
∵DG=AH=2,
∴Rt△HDG≌△AEH,
∴∠DHG=∠AEH,
∴∠DHG+∠AHE=90°
∴∠GHE=90°
∴菱形EFGH为正方形;
(2)解:
过F作FM⊥CD,垂足为M,连接GE
∵CD∥AB,
∴∠AEG=∠MGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠AEH=∠FGM,
在Rt△AHE和Rt△GFM中,
∵
∴Rt△AHE≌Rt△GFM,
∴MF=2,
∵DG=x,
∴CG=6﹣x.
∴S△FCG=
CG•FM=6﹣x.
本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:
过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.
说明理
由.
(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;
(2)利用正方形的判定方法判定四边形AFBE为正方形即可.
∵正方形ABCD,
∴AB=AD,∠BAD=90°
∵AF⊥AC,
∴∠EAF=90°
∴∠BAF=∠EAD,
在△ADE和△ABF中
∴△ADE≌△ABF(SAS),
∴BF=DE;
当点E运动到AC的中点时四边形AFBE是正方形,
理由:
∵点E运动到AC的中点,AB=BC,
∴BE⊥AC,BE=AE=
∵AF=AE,
∴BE=AF=AE,
又∵BE⊥AC,∠FAE=∠BEC=90°
∴BE∥AF,
∵BE=AF,
∴得平行四边形AFBE,
∵∠FAE=90°
,AF=AE,
∴四边形AFBE是正方形.
本题考查了正方
形的判定和性质,解题的关键是正确的利用正方形的性质.
菱形的性质;
矩形的性质.
计算题;
压轴题.
(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°
(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°
,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;
(3)先设DG=x,由第
(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x≤
,从而可得当x=
时,△GCF的面积最小.
(1)∵四边形ABCD为矩形,四边形HEFG为菱形,
∴∠D=∠A=9
0°
,HG=HE,又AH=DG=2,
∴Rt△AHE≌Rt△D