精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx
《精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx》由会员分享,可在线阅读,更多相关《精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx(31页珍藏版)》请在冰豆网上搜索。
9.2-4ThemutuallyexclusivealternativesaretobuildawarehouseinLosAngelesorbuildawarehouseinSanFrancisco.Theformoftheresultingconstraintisthatthesumofthesevariablesmustbelessthanorequalto1(x3+x4≤1).
9.2-5Thecontingentdecisionsarethedecisionstobuildawarehouse.Theformsoftheseconstraintsarex3≤x1andx4≤
x2.
9.2-6Theamountofcapitalbeingmadeavailabletotheseinvestments($10million)isamanagerialdecisiononwhichsensitivityanalysisneedstobeperformed.
9.3-1Avalueof1isassignedforchoosingyesandavalueof0isassignedforchoosingno.
9.3-2Yes-or-nodecisionsforcapitalbudgetingwithfixedinvestmentsarewhetherornottomakeacertainfixedinvestment.
9.3-3Yes-or-nodecisionsforsiteselectionsarewhetherornotacertainsiteshouldbeselectedforthelocationofacertainnewfacility.
9.3-4Whendesigningaproductionanddistributionnetwork,yes-or-nodecisionslikeshouldacertainplantremainopen,shouldacertainsitebeselectedforanewplant,shouldacertaindistributioncenterremainopen,shouldacertainsitebeselectedforanewdistributioncenter,andshouldacertaindistributioncenterbeassignedtoserveacertainmarketareamightarise.
9.3-5Shouldacertainroutebeselectedforoneofthetrucks.
9.3-6ItisestimatedthatChinaissavingabout$6.4billionoverthe15years.
9.3-7Theformofeachyes-or-nodecisionisshouldacertainassetbesoldinacertaintimeperiod.
9.3-8TheairlineindustryusesBIPforfleetassignmentproblemsandcrewschedulingproblems.
9.4-1Abinarydecisionvariableisabinaryvariablethatrepresentsayes-or-nodecision.Anauxiliarybinaryvariableisanadditionalbinaryvariablethatisintroducedintothemodel,nottorepresentayes-or-nodecision,butsimplytohelpformulatethemodelasaBIPproblem.
9.4-2Thenetprofitisnolongerdirectlyproportionaltothenumberofunitsproducedsoalinearprogrammingformulationisnolongervalid.
9.4-3Anauxiliarybinaryvariablecanbeintroducedforasetupcostandcanbedefinedas1ifthesetupisperformedtoinitiatetheproductionofacertainproductand0ifthesetupisnotperformed.
9.4-4Mutuallyexclusiveproductsexistwhenatmostoneproductcanbechosenforproductionduetocompetitionforthesamecustomers.
9.4-5Anauxiliarybinaryvariablecanbedefinedas1iftheproductcanbeproducedand0iftheproductcannotbeproduced.
9.4-6Aneither-orconstraintarisesbecausetheproductsaretobeproducedateitherPlant3orPlant4,notboth.
9.4-7Anauxiliarybinaryvariablecanbedefinedas1ifthefirstconstraintmustholdand0ifthesecondconstraintmusthold.
9.5-1Restriction1issimilartotherestrictionimposedinVariation2exceptthatitinvolvesmoreproductsandchoices.
9.5-2Theconstrainty1+y2+y3≤2forceschoosingatmosttwoofthepossiblenewproducts.
9.5-3ItisnotpossibletowritealegitimateobjectivefunctionbecauseprofitisnotproportionaltothenumberofTVspotsallocatedtothatproduct.
9.5-4ThegroupsofmutuallyexclusivealternativeinExample2arex1=0,1,2,or3,x2=0,1,2,or3,andx3=0,1,2,or3.
9.5-5Themathematicalformoftheconstraintisx1+x4+x7+x10≥
1.Thisconstraintsaysthatsequence1,4,7,and10includeanecessaryflightandthatoneofthesequencesmustbechosentoensurethatacrewcoverstheflight.
Problems
9.1a)LetT=thenumberoftowbarstoproduce
S=thenumberofstabilizerbarstoproduce
MaximizeProfit=$130T+$150S
subjectto3.2T+2.4S≤16hours
2T+3S≤15hours
andT≥0,S≥0
T,Sareintegers.
b)Optimalsolution:
(T,S)=(0,5).Profit=$750.
c)
9.2a)
b)LetA=thenumberofModelA(high-speed)copierstobuy
B=thenumberofModelB(lower-speed)copierstobuy
MinimizeCost=$6,000A+$4,000B
subjecttoA+B≥6copiers
A≥1copier
20,000A+10,000B≥75,000copies/day
andA≥0,B≥
A,Bareintegers.
c)Optimalsolution:
(A,B)=(2,4).Cost=$28,000.
9.3a)Optimalsolution:
(x1,x2)=(2,3).Profit=13.
b)TheoptimalsolutiontotheLP-relaxationis(x1,x2)=(2.6,1.6).Profit=14.6.
Roundedtothenearestinteger,(x1,x2)=(3,2).Thisisnotfeasiblesinceitviolatesthethirdconstraint.
RoundedSolution
Feasible?
ConstraintViolated
P
(3,2)
No
3rd
-
(3,1)
2nd&
3rd
(2,2)
Yes
12
(2,1)
11
Noneoftheseisoptimalfortheintegerprogrammingmodel.TwoarenotfeasibleandtheothertwohavelowervaluesofProfit.
9.4a)Optimalsolution:
(x1,x2)=(2,3).Profit=680.
b)TheoptimalsolutiontotheLP-relaxationis(x1,x2)=(2.67,1.33).Profit=693.33.
Roundedtothenearestinteger,(x1,x2)=(3,1).Thisisnotfeasiblesinceitviolatesthesecondandthirdconstraint.
2nd
600
520
9.5a)
b)LetL=thenumberoflong-rangejetstopurchase
M=thenumberofmedium-rangejetstopurchase
S=thenumberofshort-rangejetstopurchase
MaximizeAnnualProfit($millions)=4.2L+3M+2.3S
subjectto67L+50M+35S≤1,500($million)
(5/3)L+(4/3)M+S≤40(maintenancecapacity)
L+M+S≤30(pilotcrews)
andL≥0,M≥
0,S≥
L,M,Sareintegers.
9.6a)Letxij=tonsofgravelhauledfrompititositej(fori=N,S;
j=1,2,3)
yij=thenumberoftruckshaulingfrompititositej(fori=N,S;
MinimizeCost=$130xN1+$160xN2+$150xN3+$180xS1+$150xS2+$160xS3+
$50yN1+$50yN2+$50yN3+$50yS1+$50yS2+$50yS3
subjecttoxN1+xN2+xN3≤18tons(supplyatNorthPit)
xS1+xS2+xS3≤14tons(supplyatSouthPit)
xN1+xS1=10tons(demandatSite1)
xN2+xS2=5tons(demandatSite2)
xN3+xS3=10tons(demandatSite3)
xij≤5yij(fori=N,S;
j=1,2,3)(max5tonspertruck)
andxij≥0,yij≥
0,
yijareintegers(fori=N,S;
b)
9.7a)LetFLA=1ifbuildafactoryinLosAngeles;
0otherwise
FSF=1ifbuildafactoryinSanFrancisco;
FSD=1ifbuildafactoryinSanDiego;
WLA=1ifbuildawarehouseinLosAngeles;
WSF=1ifbuildawarehouseinSanFrancisco;
WSD=1ifbuildawarehouseinSanDiego;
MaximizeNPV($million)=9FLA+5FSF+7FSD+6WLA+4WSF+5WSD
subjectto6FLA+3FSF+4FSD+5WLA+2WSF+3WSD≤
$10million(Capital)
WLA+WSF+WSD≤1warehouse
WLA≤FLA(warehouseonlyiffactory)
WSF≤FSF
WSD≤FSD
andFLA,FSF,FSD,WLA,WSF,WSDarebinaryvariables.
9.8SeethearticlesinInterfaces.
9.9a)LetEM=1ifEvedoesthemarketing;
EC=1ifEvedoesthecooking;
ED=1ifEvedoesthedishwashing;
EL=1ifEvedoesthelaundry;
SM=1ifStevendoesthemarketing;
SC=1ifStevendoesthecooking;
SD=1ifStevendoesthedishwashing;
SL=1ifStevendoesthelaundry;
MinimizeTime(hours)=4.5EM+7.8EC+3.6ED+2.9EL+
4.9SM+7.2SC+4.3SD+3.1SL
subjecttoEM+EC+ED+EL=2(eachpersondoes2tasks)
SM+SC+SD+SL=2
EM+SM=1(eachtaskisdoneby1person)
EC+SC=1
ED+SD=1
EL+SL=1
andEM,EC,ED,EL,SM,SC,SD,SLarebinaryvariables.
9.10a)Letx1=1ifinvestinproject1;
x2=1ifinvestinproject2;
x3=1ifinvestinproject3;
x4=1ifinvestinproject4;
x5=1ifinvestinproject5;
Ma