精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx

上传人:b****5 文档编号:19820351 上传时间:2023-01-10 格式:DOCX 页数:31 大小:1.71MB
下载 相关 举报
精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx_第1页
第1页 / 共31页
精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx_第2页
第2页 / 共31页
精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx_第3页
第3页 / 共31页
精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx_第4页
第4页 / 共31页
精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx

《精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx》由会员分享,可在线阅读,更多相关《精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx(31页珍藏版)》请在冰豆网上搜索。

精品数据模型与决策运筹学课后习题和案例答案009Word文件下载.docx

9.2-4ThemutuallyexclusivealternativesaretobuildawarehouseinLosAngelesorbuildawarehouseinSanFrancisco.Theformoftheresultingconstraintisthatthesumofthesevariablesmustbelessthanorequalto1(x3+x4≤1).

9.2-5Thecontingentdecisionsarethedecisionstobuildawarehouse.Theformsoftheseconstraintsarex3≤x1andx4≤ 

x2.

9.2-6Theamountofcapitalbeingmadeavailabletotheseinvestments($10million)isamanagerialdecisiononwhichsensitivityanalysisneedstobeperformed.

9.3-1Avalueof1isassignedforchoosingyesandavalueof0isassignedforchoosingno.

9.3-2Yes-or-nodecisionsforcapitalbudgetingwithfixedinvestmentsarewhetherornottomakeacertainfixedinvestment.

9.3-3Yes-or-nodecisionsforsiteselectionsarewhetherornotacertainsiteshouldbeselectedforthelocationofacertainnewfacility.

9.3-4Whendesigningaproductionanddistributionnetwork,yes-or-nodecisionslikeshouldacertainplantremainopen,shouldacertainsitebeselectedforanewplant,shouldacertaindistributioncenterremainopen,shouldacertainsitebeselectedforanewdistributioncenter,andshouldacertaindistributioncenterbeassignedtoserveacertainmarketareamightarise.

9.3-5Shouldacertainroutebeselectedforoneofthetrucks.

9.3-6ItisestimatedthatChinaissavingabout$6.4billionoverthe15years.

9.3-7Theformofeachyes-or-nodecisionisshouldacertainassetbesoldinacertaintimeperiod.

9.3-8TheairlineindustryusesBIPforfleetassignmentproblemsandcrewschedulingproblems.

9.4-1Abinarydecisionvariableisabinaryvariablethatrepresentsayes-or-nodecision.Anauxiliarybinaryvariableisanadditionalbinaryvariablethatisintroducedintothemodel,nottorepresentayes-or-nodecision,butsimplytohelpformulatethemodelasaBIPproblem.

9.4-2Thenetprofitisnolongerdirectlyproportionaltothenumberofunitsproducedsoalinearprogrammingformulationisnolongervalid.

9.4-3Anauxiliarybinaryvariablecanbeintroducedforasetupcostandcanbedefinedas1ifthesetupisperformedtoinitiatetheproductionofacertainproductand0ifthesetupisnotperformed.

9.4-4Mutuallyexclusiveproductsexistwhenatmostoneproductcanbechosenforproductionduetocompetitionforthesamecustomers.

9.4-5Anauxiliarybinaryvariablecanbedefinedas1iftheproductcanbeproducedand0iftheproductcannotbeproduced.

9.4-6Aneither-orconstraintarisesbecausetheproductsaretobeproducedateitherPlant3orPlant4,notboth.

9.4-7Anauxiliarybinaryvariablecanbedefinedas1ifthefirstconstraintmustholdand0ifthesecondconstraintmusthold.

9.5-1Restriction1issimilartotherestrictionimposedinVariation2exceptthatitinvolvesmoreproductsandchoices.

9.5-2Theconstrainty1+y2+y3≤2forceschoosingatmosttwoofthepossiblenewproducts.

9.5-3ItisnotpossibletowritealegitimateobjectivefunctionbecauseprofitisnotproportionaltothenumberofTVspotsallocatedtothatproduct.

9.5-4ThegroupsofmutuallyexclusivealternativeinExample2arex1=0,1,2,or3,x2=0,1,2,or3,andx3=0,1,2,or3.

9.5-5Themathematicalformoftheconstraintisx1+x4+x7+x10≥ 

1.Thisconstraintsaysthatsequence1,4,7,and10includeanecessaryflightandthatoneofthesequencesmustbechosentoensurethatacrewcoverstheflight.

Problems

9.1a)LetT=thenumberoftowbarstoproduce

S=thenumberofstabilizerbarstoproduce

MaximizeProfit=$130T+$150S

subjectto3.2T+2.4S≤16hours

2T+3S≤15hours

andT≥0,S≥0

T,Sareintegers.

b)Optimalsolution:

(T,S)=(0,5).Profit=$750.

c)

9.2a)

b)LetA=thenumberofModelA(high-speed)copierstobuy

B=thenumberofModelB(lower-speed)copierstobuy

MinimizeCost=$6,000A+$4,000B

subjecttoA+B≥6copiers

A≥1copier

20,000A+10,000B≥75,000copies/day

andA≥0,B≥ 

A,Bareintegers.

c)Optimalsolution:

(A,B)=(2,4).Cost=$28,000.

9.3a)Optimalsolution:

(x1,x2)=(2,3).Profit=13.

b)TheoptimalsolutiontotheLP-relaxationis(x1,x2)=(2.6,1.6).Profit=14.6.

Roundedtothenearestinteger,(x1,x2)=(3,2).Thisisnotfeasiblesinceitviolatesthethirdconstraint.

RoundedSolution

Feasible?

ConstraintViolated

P

(3,2)

No

3rd

-

(3,1)

2nd&

3rd

(2,2)

Yes

12

(2,1)

11

Noneoftheseisoptimalfortheintegerprogrammingmodel.TwoarenotfeasibleandtheothertwohavelowervaluesofProfit.

9.4a)Optimalsolution:

(x1,x2)=(2,3).Profit=680.

b)TheoptimalsolutiontotheLP-relaxationis(x1,x2)=(2.67,1.33).Profit=693.33.

Roundedtothenearestinteger,(x1,x2)=(3,1).Thisisnotfeasiblesinceitviolatesthesecondandthirdconstraint.

2nd

600

520

9.5a)

b)LetL=thenumberoflong-rangejetstopurchase

M=thenumberofmedium-rangejetstopurchase

S=thenumberofshort-rangejetstopurchase

MaximizeAnnualProfit($millions)=4.2L+3M+2.3S

subjectto67L+50M+35S≤1,500($million)

(5/3)L+(4/3)M+S≤40(maintenancecapacity)

L+M+S≤30(pilotcrews)

andL≥0,M≥ 

0,S≥ 

L,M,Sareintegers.

9.6a)Letxij=tonsofgravelhauledfrompititositej(fori=N,S;

j=1,2,3)

yij=thenumberoftruckshaulingfrompititositej(fori=N,S;

MinimizeCost=$130xN1+$160xN2+$150xN3+$180xS1+$150xS2+$160xS3+

$50yN1+$50yN2+$50yN3+$50yS1+$50yS2+$50yS3

subjecttoxN1+xN2+xN3≤18tons(supplyatNorthPit)

xS1+xS2+xS3≤14tons(supplyatSouthPit)

xN1+xS1=10tons(demandatSite1)

xN2+xS2=5tons(demandatSite2)

xN3+xS3=10tons(demandatSite3)

xij≤5yij(fori=N,S;

j=1,2,3)(max5tonspertruck)

andxij≥0,yij≥ 

0,

yijareintegers(fori=N,S;

b)

9.7a)LetFLA=1ifbuildafactoryinLosAngeles;

0otherwise

FSF=1ifbuildafactoryinSanFrancisco;

FSD=1ifbuildafactoryinSanDiego;

WLA=1ifbuildawarehouseinLosAngeles;

WSF=1ifbuildawarehouseinSanFrancisco;

WSD=1ifbuildawarehouseinSanDiego;

MaximizeNPV($million)=9FLA+5FSF+7FSD+6WLA+4WSF+5WSD

subjectto6FLA+3FSF+4FSD+5WLA+2WSF+3WSD≤ 

$10million(Capital)

WLA+WSF+WSD≤1warehouse

WLA≤FLA(warehouseonlyiffactory)

WSF≤FSF

WSD≤FSD

andFLA,FSF,FSD,WLA,WSF,WSDarebinaryvariables.

9.8SeethearticlesinInterfaces.

9.9a)LetEM=1ifEvedoesthemarketing;

EC=1ifEvedoesthecooking;

ED=1ifEvedoesthedishwashing;

EL=1ifEvedoesthelaundry;

SM=1ifStevendoesthemarketing;

SC=1ifStevendoesthecooking;

SD=1ifStevendoesthedishwashing;

SL=1ifStevendoesthelaundry;

MinimizeTime(hours)=4.5EM+7.8EC+3.6ED+2.9EL+

4.9SM+7.2SC+4.3SD+3.1SL

subjecttoEM+EC+ED+EL=2(eachpersondoes2tasks)

SM+SC+SD+SL=2

EM+SM=1(eachtaskisdoneby1person)

EC+SC=1

ED+SD=1

EL+SL=1

andEM,EC,ED,EL,SM,SC,SD,SLarebinaryvariables.

9.10a)Letx1=1ifinvestinproject1;

x2=1ifinvestinproject2;

x3=1ifinvestinproject3;

x4=1ifinvestinproject4;

x5=1ifinvestinproject5;

Ma

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1