控制爆破的施工工法.docx

上传人:b****2 文档编号:19680942 上传时间:2023-04-24 格式:DOCX 页数:29 大小:867.34KB
下载 相关 举报
控制爆破的施工工法.docx_第1页
第1页 / 共29页
控制爆破的施工工法.docx_第2页
第2页 / 共29页
控制爆破的施工工法.docx_第3页
第3页 / 共29页
控制爆破的施工工法.docx_第4页
第4页 / 共29页
控制爆破的施工工法.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

控制爆破的施工工法.docx

《控制爆破的施工工法.docx》由会员分享,可在线阅读,更多相关《控制爆破的施工工法.docx(29页珍藏版)》请在冰豆网上搜索。

控制爆破的施工工法.docx

控制爆破的施工工法

石方路基控制爆破施工工法

1、前言

控制爆破技术就是根据工程要求、周围环境和爆破控制对象等具体条件,通过精心设计,采用各种施工与防护技术措施,严格地控制炸药爆炸能量释放和介质破碎过程,既要达到预期的爆破效

果,又要将破坏X围、倒塌方向以与爆破危害(地震波、飞石、空气冲击波、和噪声等)严格控制在规定的限度以内,这是一种对爆破效果和爆破安全进展双重控制的爆破技术。

由于龙永十三标项目路基紧挨G209国道,公路沿线房屋多而集中,有一局部破旧不堪,墙体

多为夯土墙,能承受爆破震动的允许值很小,且距路基边线特近。

在屡次爆破中,明显有飞石到达G209国道和民房,导致村民频频出现阻工现象,严重影响了项目施工进度。

针对这种特殊的环境,龙永项目与国防科技大学某某工程兵学院毛益松教授合作,共同制定出

一套能够满足该地安全、顺利施工的方法,既可以保持与当地村民的关系,又可以保证施工进度。

2、工法特点

在复杂环境下进展大规模石方深孔控制爆破比采用普通爆破的优越性,主要表现在以下几个方

面:

(1)为能有效控制爆破效果,保证开挖顺利,针对不同的地质和施工环境,采用相应的控制爆破技术。

(2)能极大地减少震动和冲击波,有效防止飞石,保证建筑设施安全。

(3)爆破的岩石“开裂、凸起、松动而不飞散'’,岩石破碎效果好,有利于加快清运作业速度。

(4)复杂环境深孔控制爆破技术无论从施工组织方面还是造价方面都增加了投资,但保证爆破施工工程质量。

3、适用X围

控制爆破技术适用于各种附近有建筑物、道路与其它防震动设施的施工项目。

4、工艺原理

随着我国爆破器材日益完善,主线路基石方、连接线石方和服务区石方主要采用深孔爆破技术。

施工中,采用深孔爆破主要碰到以下几方面的难题:

(1)爆破飞石安全控制。

爆破安全控制方面最常见的就是爆破飞石和振动冋题,几乎所有爆破场地都会遇到飞石和地震安全防护。

而深孔爆破对冲击波、尘烟等危害较小,因此,深孔爆破的安全控制主要针对爆破飞石和振动两方面(本文主要详谈爆破飞石问题)。

(2)岩石大块率居高不下。

大块率是衡量深孔爆破效果优劣的主要指标,岩溶地区除了地外表

石芽、探头石的大块外,由于孔距和排距参数参差不齐而大块率过高将增加二次破碎本钱,爆块大

块还使装挖和碎石工序损耗增加。

(3)钻孔速度慢和炸药单耗高。

提高钻孔速度和降低炸药单耗是深孔爆破技术开展和推广应用的根本,而岩溶地区深孔爆破本钱很高,很难降低,给施工单位压力很大。

5、施工工艺与操作要点

本次爆破使用2#岩石乳化炸药;炸药密度p=0.95~1.25g/cm3;爆速D=3500m/s。

5.1.1深孔的布孔方式

本次爆破钻孔采用高风压潜孔钻,中深孔直径为90~100mm露天深孔按排列的方向来分,有

垂直深孔和倾斜深孔两种,采用潜孔钻机时多以斜孔为主。

如图4-1所示。

露天台阶倾斜深孔爆破

比垂直深孔爆破有如下优点:

(1)抵抗线较小而且均匀,岩石的破碎质量好,留根底较少。

(2)爆破后容易保持台阶坡面角和坡面的平整,减少突悬局部和裂缝。

(3)钻孔机械和台阶坡顶线之间的距离较大,作业时人员和设备比拟安全。

倾斜深孔主要缺点是增加了炮孔长度。

按照一次爆破排数多少的不同,可将露天深孔爆破分为单排布置和多排布置两种。

采用多排爆

破时,常将相邻两排炮孔交织排列。

图5-1台阶(梯段)深孔爆破孔网示意图

-

二O

io

ao

3o

爆破质量、爆破本钱等,所以应当重视参数的选择。

5.1.2深孔爆破参数设计

(1)孔径

KY100型履带式露天潜孔钻车、LGY-16/13G空压机,

本工程钻孔中深孔爆破使用某某开山牌钻孔直径D=100mm钻杆长每根3m>

(2)底盘抵抗线W1

露天深孔爆破的最小抵抗线的两种表示方法,即最小抵抗线W和底板抵抗线W1。

前者是指由

装药中心到台阶坡面的最小距离;后者是指炮孔中心线至台阶坡底线的水平距离。

为了计算方便和有利于减少留根底,一般不用最小抵抗线为参数,而用底板抵抗线。

底板抵抗线的大小与如下因素有关:

钻机的钻孔直径:

孔径越大,底板抵抗线也相应越大;被爆岩石的性质:

可爆性好的岩石可以取较大值;孔底使用的炸药:

炸药威力大,底板抵抗线的值可越大;梯段高度:

高度越高,所取的底板抵抗线的值应该越大,但当梯段高度超过一定值后,底板抵抗线值与梯段高度无关。

底板抵抗线可用下式确定:

W仁kd

式中:

k——国内公路建设:

f=13,k=30〜33;f=10,k=35〜37;f=8,k=38〜40;f=6,k=41〜43。

d孔径,mm

W般在2.5〜之间。

本工程取2.5〜。

(3)孔深与超深

孔深随地形变化而变化,一般为6〜8m超深通常为(0.15〜0.35)W1,取L3=0.5〜1.0m。

(4)孔距和排距

孔距a=(1.0〜1.25)W1,取&=2.5~。

排距b=(0.9〜1.0)W1,取b=。

(5)填塞长度

合理的填塞长度L1=(30〜40)do爆破时为防止飞石的产生,尤其是杜绝个别飞石垂直升起,

炮孔填塞长度必须大于最小抵抗线20〜50cm,取L1>3.0m。

(6)单位炸药消耗量q

根据岩石的可爆性、炸药种类、自由面条件、起爆方式、块度要求并结合试爆情况确定。

根据

《爆破手册》(汪旭光主编,冶金工业,2010.10),单位炸药消耗量见表4-1,如当岩石巩固系数f为10时,单位炸药消耗量q值为/m3以上,本次工程炸药单耗q取0.40〜0.50kg/m3,准确值由现

场试爆确定。

表5-1深孔爆破单位耗药量

岩石硬度系数f

0.8~2

3~4

5

6

8

10

12

14

16

单耗量q(kg/m3)

5

0.50

5

0.61

0.67

0.74

0.81

0.98

(7)单孔装药量

1)单排孔爆破或多排孔爆破的第一排孔的单孔装药量计算

Q=q.a.W1.H

式中:

Q炮孔装药量;kg

q单位炸药消耗量,kg/m3;

a孔距,m;

H――台阶高度,m;

W1底盘抵抗线,mo

2)多排孔爆破时装药量的计算

在多排孔爆破时,从第二排起,以后各排在爆破时,因受前面各排岩石的阻力的作用,装药应有所增加。

可用下述公式计算

Q1=K.q.a.b.H

K为后排孔因岩石阻力而增加的系数,采用微差爆破时取K=1.0〜1.2,采用齐发爆破时取

K=1.2〜1.5。

一般K=1.1〜1.2,取K=1.1。

第1排的单孔装药量为Q=qaW1H,Q=25〜34kg;第2排单孔装药量Q=(1.1〜1.2)abH,

如此Q=28〜36kg。

5.1.3装药结构与填塞

单孔装药量按Q=qWHa十算,边孔在无侧向临空面时其药量增加10%~20%装药结构采用连续

装药,起爆体的位置一般安排在离装药顶面或底面的1/3处,起爆装药的聚能穴指向主装药方向。

堵塞长度与最小抵抗线、钻孔直径和爆区环境有关。

因环境条件不许有飞石,堵塞长度取钻孔直径的30~35倍(取2.7~),堵塞材料可用泥土或钻孔时排出的岩粉,但其中不得混有大于30mm的

岩块。

5.1.4起爆网路设计

起爆网路如图4-2所示,炮孔内同列装同段非电毫秒雷管,第一列装11段(460ms),第二列装13段(640ms),第三列装15段(880ms)。

炮孔装药堵塞完毕后,在孔外排之间的孔用3段(50ms)或5段(110ms)非电毫秒雷管将各炮孔导爆管联接起来,其延期时间与间隔标在图4-2中,一次爆破39孔单孔单响,单响最大药量为20kg,总药量为780kg。

孔内用高段位雷管,主要是考虑在第1个装药起爆时,孔外网路应全部起爆或已传爆过去相当

的距离,从而防止先起爆的装药爆破时对孔外起爆网路的损伤。

孔外用低段位雷管,可在保证各分段爆破产生的震动不会叠加的根底上缩短整个起爆的时间,使建(构)筑物承受的震动总延时减少。

图4-2爆破网路示意图(单位:

ms)

5.2光面预裂爆破参数选择与装药量计算

5.2.1概述

(1)路基边坡比:

1,两相邻间肩台高差,肩台宽度为2m。

(2)光面和预裂爆破概念:

光面爆破是一种控制爆破方法。

其特点是在设计开挖轮廓线上钻凿

一排孔距与最小抵抗线相匹配的光爆孔,并采用不偶合装药或其他特殊的装药结构,在开挖主体的

11段460

装药响炮之后,光爆孔内的装药同时起爆,从而形成一个贯穿光爆炮孔、光滑平整的开挖面。

预裂爆破也是一种控制爆破方法。

其特点是在设计开挖轮廓线上钻凿一排孔距适宜的预裂孔,

并采用不偶合装药或其他特殊的装药结构,在开挖主体爆破之前,同时起爆预裂炮孔内的装药,从

而形成一条贯穿预裂炮孔的裂缝,如图5-3预裂爆破示意图,通过这条裂缝降低开挖主体爆破时对

保存岩体的破坏。

图5-3预裂爆破示意图

(3)预裂爆破和光面爆破的优点很突出,主要表现在:

一是可以减少超挖、欠挖工程量,节省装运、回填、支护费用。

二是开挖面光滑平整,有利于后期的施工作业。

三是对保存岩体的破坏影响小,有利于边坡的稳定。

四是由于预裂缝的存在,可以放宽对开挖主体爆破规模的限制,提高工效。

预裂光面爆破的效果如何,很大程度上取决于工程中爆破参数选择和爆破控制技术。

药孔参数设计

(1)炮孔直径d

为克制普通爆破法处理边坡的弊端,预裂孔直径的选定本着以下原如此:

一是根据现场主体开

挖爆破所用的穿孔机具情况,尽量使用同一型号;二是尽量防止或减小爆破对边坡围岩的损害;三

是尽可能采用同品种工业炸药,不定制特殊药卷。

本工程主体开挖爆破穿孔设备为①89〜100mrt潜

孔钻机,炮孔直径为100mm使用炸药为同一厂家生产的岩石乳化炸药①32mr的卷状药。

因此,本工程边坡预裂爆破炮孔亦采用①90m潜孔钻机钻凿,其炮孔直径为100mm即d=100mm

(2)炮孔间距a

本工程预裂爆破的目的是使沿设计边坡面上布置的预裂炮孔之间产生贯穿裂缝,以形成较平整

的断裂面,并在临近主爆炮孔爆破时能阻减其产生的爆破应力波与地震效应对边坡围岩的损伤。

此,预裂爆破炮孔间距确实定,应考虑岩石的物理力学性质,炸药爆炸性能和装药结构与其参数等。

本工程主要参照瑞典兰格弗尔斯给出的公式确定。

a=(8〜12)d(d>60mm)

式中:

a为预裂爆破炮孔间距,cm;

d――为预裂炮孔直径,cm对软岩或结构破碎的岩石,取小值,对硬岩或完整性好的岩石取

大值。

根据以往工程经验并经试验检验,本工程实取预裂孔间距为100〜120cm,即a=100〜120cmo

(3)平均线装药量

预裂爆破只要求形成贯穿预裂缝,而不是大量崩落岩石,也不能损伤围岩,因此不宜采用过大

的装药量。

本工程采用二套经验公式计算,然后经试爆确定其值。

1长江科学院经验公式

q线=0.034[b压]

式中:

q线为预裂炮孔每米装药量,kg/m;

b压一一为岩石极限抗压强度,MPa据地质报告资料,取b压=60MPa

a为预裂孔间距,a=1.0〜。

那么q线=0.448〜0.612kg/m。

2考虑岩性与孔网参数的经验公式

qxkd.a

式中:

q线为预裂孔线装药量,g/m;

k为岩石系数,坚硬岩石为0.6,中等强度岩石为0.4〜0.5,软岩或较破粹岩为0.3〜0.4,

取k=0.5。

如此q线=500g/m。

在以上计算的根底上,经考察现场试爆效果,并考虑布药方便,将预裂孔平均线装药量确定为:

一般地段q线=500g/m;强风化岩体q线=400g/m。

(4)孔底线装药量qd线、孔口线装药量qc线

根据众多预裂爆破实践经验,要使预裂缝贯穿质量好,阻震效果佳,在预裂炮孔底部一定X围

内应加大装药量。

本工程由于预裂炮孔深,底部夹制力大,所以将孔底2m>围内的线装药量增大一

倍,即qd线=1000g/m。

同样,为防止预裂爆破形成爆破漏斗,减小孔口处围岩破坏,孔口堵塞段以下2米段的线装药

量减小一半,即qc线=250g/m。

(5)不偶合系数m

工程实践明确,在预裂爆破炮孔直径d=(60〜200)mm情况下,不偶合系数m超过2〜4为宜。

m=d/de

式中,de为预裂孔装药直径,本工程预裂孔装药采用①32mr卷状岩石乳化炸药,所以其不偶合系数为m=3.125。

(6)预裂孔与主爆区炮孔距离

预裂爆破预裂孔首先起爆,形成预裂面,如果主爆孔离预裂孔太近,主爆孔产生的应力波可能

使预裂区破损、破裂,达不到预裂目的;如果主爆孔离预裂孔太远,主爆孔爆破后可能使主爆孔与预裂孔间的岩石不能充分破坏,会产生根底。

合理距离取决于主爆孔的破坏半径,约为1.3〜1.5倍,根据应力波理论,对于石灰岩(f为8以

上),2#岩石炸药,可计算主爆孔破坏半径为:

r=-1m主爆孔与预裂孔距离如此为1.3〜1.5m。

本工程预裂孔起爆技术遵循以下原如此:

一是预裂孔间的起爆时差应尽可能小,以延长相临预

裂孔爆炸应力波动态应力场和爆炸气体准静应力场叠加的时间;二预裂孔间的贯穿裂缝应在相邻主

爆孔爆炸前,根据工程经验,预裂孔的起爆时间必须比最近一排主爆孔的起爆时间超前100〜150

毫秒以上。

装药结构

为减小预裂孔间起爆时差,保证孔内所有药卷爆轰效果,边坡预裂孔采用双导爆索并列、沿预

裂孔轴向全长敷设、将①32m炸药卷按设计计算值分配串绑于导爆索的装药结构,如图4-4预裂孔

装药结构图。

1孔底2米长X围:

qd线=1000g/m,Qd=2kg,需①32mr岩石乳化炸药10卷,那么炸药首尾相接,组成连续柱状药柱,用胶布将其与并列双爆索段绑固;

2孔中间X围:

q线=500g/m,每1米孔需①32mmL化炸药,那么每卷炸药间隔20cm分别与导爆索

绑捆;

3孔口堵塞段下2m长X围:

qc线=250g/m,Qc=,需用①32mmL化炸药2.5卷,将其分为5个半卷,在此段导爆索上每隔30cm捆绑上半卷药。

为方便现场装药施工,并阻减爆炸冲击波对边坡围岩孔壁的作用,在炸药卷串双导爆索一侧垫

铺一条竹片,具体实施装药时,将竹片侧靠于边坡围岩侧,而使炸药卷朝向开挖侧。

起爆网路

本工程施工工序:

远离边坡的一侧主体岩石先进展中深孔爆破开挖,保存距边坡约厚为缓冲层,

布置3排主爆孔和一排沿边坡面的预裂孔,并同网起爆。

预裂孔孔内双导爆索支线与地面一双股并列主爆导爆索并联搭接,主爆索由2发MS段导爆管雷管引爆。

3排主爆孔均实行孔内延期起爆,分

别于孔内装入MS4MS6MS段非电雷管。

4排孔的导爆管组成同一非电起爆网路一次起爆,如图4-5

预裂炮孔布置与起爆网路图。

预裂孔

2排孔

1排孔

图5-5预裂炮孔布置与起爆网路示意图(单位:

m)

按照上述起爆网路实施,边坡预裂孔与邻近3排主爆孔起爆时间如表5-2所示,预裂孔排起爆时

间比最近的第3排主爆孔超前145〜205毫秒。

表5-2预裂孔与邻近炮孔起爆时差表

炮孔名称

起爆雷管段别

起爆时间/ms

起爆时差/ms

1排主爆孔

MS4

75±10

2排主爆孔

MS6

150±20

+(45〜105)

3排主爆孔

MS8

250±20

+(60〜140)

边坡预裂孔

MS4

75±10

-(145〜205)

图5-5是高速公路边坡预裂爆破布孔实际图,爆破效果达到预期目的。

 

Ms1Ms5Ms3

图5-6边坡预裂爆破布孔示意图

5.3小台阶单孔延时弱松动控制爆破参数设计

5.3.1爆破方式的选择

根据该工程地质情况、爆破点周围环境和现有施工条件,另外考虑到施工进度和经济本钱,

爆破方案可采用浅孔松动爆破技术。

(1)浅孔松动爆破技术:

采用多级台阶,每级台阶高度2-3m左右通过毫秒电雷管或非电导爆管延期起爆技术进展微差松动爆破(见图5-7)。

(2)优化爆破参数,优化起爆网路参数,优化装药结构,减少深孔爆破首次大块率,减小二次破碎量,确保岩石粒径装车要求。

通过调整装药结构、加长填塞,提高填塞质量等措施,减少爆破震动,控制飞石飞散,确保爆破施工安全顺利。

图5-7浅孔台阶爆破示意图

5.3.2炮孔布置

炮孔排列方式采用单排孔和多排孔相结合的布孔方式,采用多排孔时,炮孔成梅花形布置,采

用小台阶式斜孔爆破法,有时亦可在台阶底部辅以倾斜炮孔,对孤石如此视其情况灵活布孔。

其爆

破参数如下:

533爆破参数设计

(1)炮孔直径(d)

钻孔可选用风动凿岩机等设备,孔径为36-42mm炸药选用2#岩石硝铵炸药或乳化炸药,药卷

直径为32mm

(2)炮孔深度(L)

L=H

式中:

l—炮孔深度,m

H――台阶高度,m;

注意:

超深超过设计标高约。

(3)最小抵抗线(W)

⑷炮孔间距(a)

(5)列距(b)

(6)单孔装药量(Q)

Q=Vq

式中:

V为单位体积,m,V=abH

3

q=0.40〜/m3。

如a取、b取、H取、q取.m-3时,如此单孔装药量Q=

(7)装药和填塞

1)装药:

装药前先要验孔,孔内有水时,采用乳化炸药。

每个孔装一个检查合格的电雷管。

药结构见图5-8。

图5-8装药结构示意图

,考虑爆破环境,填塞不小于im用粘土填塞。

填塞作业应保护好电雷管的引出线。

(8)试爆

因岩石的不均匀性,针对不同风化程度和裂隙发育程度的情况,应在单位装药量和最大单段药

量方面作适当调整,为更好地把握药量以取得理想效果,必须进展试爆,即按设计的方案要求在现场实施爆破,以验证方案爆破参数的科学化与合理化,从而确定最优爆破参数。

534装药结构与填塞方法

采用间隔装药法,施工中选用直径232mm的乳化炸药,装药时将炸药间隔捆装在竹片上,再

装入炮孔,炮孔堵塞长度不少于。

5.3.5起爆网路设计

根据岩石的性质,裂隙发育程度的结构特点以与爆破规模,为了改善爆破破碎质量,降低炸药消耗,减少爆破地震效应,拟采用微差爆破方式,因每个台阶只有向上和朝向最小抵线方向两个自

由面,应当选用排间微差起爆方式,必要时亦可采用孔间微差起爆方式。

(1)微差间隔时间确实定

微差爆破的合理时间间隔,应以达到形成新自由面的时间最合理,破碎质量最优,减震效果好

为原如此,微差间隔时间由下式确定:

t(2旷4O)W0/f

式中:

W0底盘抵抗线,f――岩石巩固系数f=6〜8。

根据大量工程爆破经验和理论研究成果,同时考虑到我国现有延期雷管的分段情况,微差间隔

时间通常取25〜50mso

本工程选用:

孔间微差间隔时间为50ms(MS3)。

排间微差间隔时间为110ms(MS5)。

(2)孔间微差起爆的网路设计

对重点保护目标,药包需单个起爆,即孔间微差起爆。

实施孔间微差起爆时,采用孔内延时和孔外延时相结合的方式,为了保证先爆装药不破坏后爆孔网路,采用孔外低段别导爆管雷管,孔内

高段别导爆管雷管的设计,并满足如下设计。

t>t外

其网路连接形式如图5-9所示。

ms3

<

ms3

ms3

ms3

<

ms3

ms3

ms9i

Ms9\

ms9\

ms9

S=■

ms9i

ms9'

1

1

11

J

1

图5-9孔间微差爆破网路示意图

536爆破施工工艺

(1)钻孔深度的控制

为了实现钻、爆、运循环作业和连续施工,钻孔深度取。

(2)钻孔精度的控制

1钻孔孔位精度:

钻孔作业应尽可能地按爆破设计的炮孔间距和排距钻孔,在实际钻孔时,由

于受地形、地质等因素的影响,不能完全准确地按设计的位置钻孔,但是,为了保证爆破效果,钻

孔孔位误差为土20cm对于一些不能按设计钻孔的炮位,应适当地前后左右移动,不能轻易地取消

炮孔。

必须严格地控制孔位精度,否如此,不仅爆破效果不好,还将有根坎,对下一层钻爆作业十分不利。

2钻孔角度的精度:

为了控制爆破飞石,改善爆破效果,有时设计斜孔,一般倾斜角度为75〜

85度,在钻孔作业时,对于倾斜的炮孔应按设计的角度钻孔,特别是同一排炮孔,倾斜角度的误差

不能大于土1.5度。

3钻孔深度的精度:

无论是一次性爆破,还是分层爆破,钻孔孔深(包括超钻)是十分重要的,

深度不够,爆破效果就不好,炸不到设计的深度,使下一层钻爆作业十分困难,因此必须严格控制

钻孔深度,一般误差不应大于土10cm对于个别的堵孔、卡孔现象,应作好处理工作,用炮棍捣通或用高压风管吹通,否如此,应重新补孔。

4)钻孔数量:

在进展明挖浅孔爆破,一般不允许大规模大吨位的爆破,但是,为了减少放炮

时对周围的干扰,应尽可能地减少爆破次数,一般一次爆破的炮孔数为20〜30个。

(3)钻孔技术

1钻孔平台的修建

对于分层台阶式爆破平台,应根据设计的爆破梯段,从上到下逐层修建,上层爆破后为下层平台的修建创造了条件,上一层的下平台是下一层的上平台,因此,每一层的爆破,都应对钻孔进展严格的控制,为下一层的钻爆作业创造良好的条件。

2钻孔技术

钻孔质量标准:

孔位、孔深、角度符合爆破设计的要求,误差在允许的X围内;孔口完整、孔

壁光滑、孔身直顺。

钻孔要领:

作业手应掌握钻机的操作要领,熟悉和了解设备的性能、构造原理与使用须知事项,有熟练的操作技术,并掌握不同性质岩石的钻凿规律。

钻孔技术:

孔口开好后,进入正常钻孔时,也应掌握一定的技术。

对于硬岩:

应选用高质量高硬度的钻头,送全风加全压,但转速不能过高,防止损坏岩石;对于软岩:

应选全风加半压,慢打钻,排净碴,每进1.0〜1.5m提钻孔吹一次,防止孔底积碴过多而卡孔;对于风化破碎层:

应风量小压力轻,勤吹风勤护孔。

(4)装药与堵塞

1装药

A每个孔口应由专人负责,记录装入各孔的炸药品种和数量,并与设计数量核对无误后,再填卡、签字或盖章,交爆破负责人。

B装药前应与当地气象、与时掌握气象资料尽量选择晴天进展装药填塞。

C装药工作,应在爆破技术人员指导下进展。

2)堵塞

A堵塞开始前,应根据设计要求备足填塞材料,堆放在孔口附近。

B装药完毕后,孔口采用沙土细料充填,顶部不留空隙。

C堵塞时,应有专人负责检查督促堵塞质量,堵塞完毕,应进展检查。

6、材料与设备

序号

材料名称

规格与要求

用途

1

乳化炸花

炸药

2

雷管

引爆

机具设备

 

序号

名称

规格型号

单位

数量

备注

1

潜孔钻

90

4

2

风镐

03-11

4

3

风动凿岩机

YT-28

4

4

高压风管

10

7、质量控制

《公路工程质量检验评定标准》第一册〔土建工程〕JTGF80/1—2004

《公路路基施工技术规X〉JTGF10—2006

既不造成对路根本身的巨大扰动,同时能够保证没有飞石等四飞,造成对附近民房与道路的的

威胁。

&安全措施

复杂环境下大规模深孔控制爆破需要控制爆破振动对附近建筑物的危害,控制爆破飞石对环境

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1