最新冀教版五年级数学上册第八单元方程 优秀教学设计含反思Word格式.docx
《最新冀教版五年级数学上册第八单元方程 优秀教学设计含反思Word格式.docx》由会员分享,可在线阅读,更多相关《最新冀教版五年级数学上册第八单元方程 优秀教学设计含反思Word格式.docx(30页珍藏版)》请在冰豆网上搜索。
2、
过程与方法:
会用方程表示生活中的等量关系。
3、
情感态度与价值观:
通过自主探究,合作交流等数学活动,激发学生的兴趣,培养学生独立自主的成就感以及合作交流的团队精神。
重点、难点:
教学重点:
经历从现实问题情境中抽象出方程的过程,理解方程的本质。
教学难点:
理解方程的意义。
教学准备:
教具准备:
多媒体课件。
学具准备:
天平,实物若干。
教学过程:
一、创设情境,揭示课题
创设情境:
师:
同学们,你们玩过跷跷板吗?
生:
玩过。
那么今天我们就利用跷跷板的原理来学习新知识—方程。
(揭示并板书课题:
方程)
【设计意图:
通过学生经常玩跷跷板这件事,来激发学生的学习兴趣,使学生在轻松、愉快的学习环境中初步感知方程的含义】
二、合作学习,探究新知
1、看图列式。
其实在我们的学习中还有一种仪器,它和跷跷板很相似是什么?
天平。
关于天平,你知道些什么?
可以看出哪个物体重哪个物体轻。
天平的指针如果指向中间,说明天平平衡。
天平平衡说明什么?
说明天平两边物体的质量相等。
(出示课件)请同学们逐个观察天平示意图,用式子表示天平两边的数量关系。
说一说这些式子可以怎样分类。
小组讨论,全班交流。
2、认识方程。
大家是怎样分的?
我按天平平衡和不平衡把算式分为两类。
平衡的有20+30=50,30+x=80,2x=100;
不平衡的有x>
30,50<
x+30。
天平平衡状态下的算式都含有“=”号,天平不平衡状态下的算式都含有“>
”或“<
”。
一类是含有未知数的:
30+x=80,2x=100,x>
x+30,一类是不含有未知数的:
20+30=50。
他们说得很好。
像20+30=50,30+x=80,2x=100……这些用等号连接起来,表示相等关系的式子,叫做等式。
通过让学生观察、比较,学生容易总结出方程的意义是含有未知数的等式叫方程】
我们来看这几个等式,它们有什么相同点?
有什么不同点?
相同点是它们都是等式。
不同点是有的等式含有未知数,有的等式不含未知数。
观察得很认真。
像30+x=80,2x=100……这些含有未知数的等式,我们把它叫做方程。
大家想一想,方程有什么样的特点?
举出一个例子。
方程必须是等式。
方程必须含有未知数。
如:
5-x=3。
总结的很对。
方程必须同时具备这两个特点,缺一不可。
看来,方程和等式有着密切的联系。
想一想,方程和等式有什么联系?
学生先单独思考,再小组讨论。
方程一定是等式,等式不一定是方程。
我们可以用图来表示方程和等式的关系。
课件出示。
下面我们就检验一下学习的情况。
通过找关键句和举例说明,使学生在理解方程意义的基础上从表象上升到抽象,只有学生自己能够举出例子并说明理由,才能真正证明学生对方程的意义有了进一步的理解。
这样就突破了本节课的教学重难点】
三、巩固新知。
1、下面哪些是方程,哪些不是方程?
为什么?
4+3x=10
6+2x
7-x>
3
17-8=9
8x=0
18÷
x=2
2、用方程表示下面的数量关系。
(1)x加上35等于91。
(2)x的3倍等于57。
(3)x减3的差是6。
(4)7.8除以x等于1.3
答案:
1、方程有:
,8x=0
,18÷
2、
(1)x+35=91,
(2)3x=57,(3)x-3=6,(4)7.8÷
x=1.3
真正让学生理解方程的含义】
四、达标反馈
1、下面哪些是方程,是方程的它后面打上(√)
(1)ⅹ+3ⅹ>56
(
)
(2)y÷
16
(
(3)3ⅹ=135
( )
(4)36+4=40 ( )
2、列出方程:
(1)、煤场上午运来煤1.5吨,下午又运来了一些,一天共运来煤4.3吨,下午运来多少吨?
(2)、三个连续的奇数的和是57,中间的数是M,你能列求M的值的方程吗?
五、课堂小结
同学们,你们这节课有什么收获?
我知道用“=”号来表示相等关系的式子叫做等式。
我知道方程是含有未知数的等式。
我知道等式和方程的关系。
对本节课的内容作一次整体回顾,让学生对本节课的新知识进行一次梳理,深化知识体系,领悟知识要点,体验探索新知识的喜悦,获得成功感】
六、布置作业
教材第80页练一练1---3题。
板书设计
1、等式不等式
20+30=50,x>
30,
30+x=8050<
x+30
2x=100
2、含有未知数的等式叫做方程。
3、
教学反思
本节课的教学重点是让学生掌握什么是等式什么是方程,以及等式与方程之间的关系。
我在教学中也准确把握了这一点,依次教学了这三个知识点。
这三个知识点看上去也很简单,如果做练习应该不会出什么错,可是课后练习我发现这类问题有的学生还是会出错。
课后,我反思在教学概念知识时,不仅要教学概念本质内容,还要抓住概念现象对学生进行训练,这样,更容易和轻松的做好练习。
第二课时等式的性质
冀教版小学数学五年级上册第81—82页等式的性质。
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。
它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
同时培养学生数学思维能力。
1、知识与技能:
理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
2、过程与方法:
在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
3、情感态度与价值观:
积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
抽象归纳出等式的基本性质。
天平、砝码、多媒体课件。
一、复习导入。
上一节课,我们学习了等式,你们都知道哪些等式?
这些等式有什么性质呢?
这一节课,我们就来探究一下等式的性质。
(板书课题“等式的性质”)
通过对旧知识的复习寻找新知识的生长点,引出了本课内容,激发学生的探索欲望】
二、自主探索,合作交流
活动一:
学习等式的加减性质
请看,这是什么?
当天平的左边和右边保持平衡时,说明了什么?
左右两边重量相等。
现在我们在天平的左右两盘里放入物品使天平平衡。
学生一边看一边做实验。
我们把左边物体的质量用x表示,右边物体的质量用y表示。
那么这一过程可以如何表示?
用x=y表示。
两边分别同时放上砝码,天平还能保持平衡吗?
试一试。
两边分别同时放上相同质量的砝码,天平还能保持平衡。
谁能用式子把你们组的实验结果表示?
x+50=y+50
x+10=y+10
……
先合作、交流
,后找多名学生归纳规律,在学生都理解后教师出示:
等式两边同时加上(或减去)同一个数,等式仍然成立。
这一环节内容较简单,放手让学生通过实验和回答提出的问题来总结出结论,充分发挥学生的主体地位】
活动二:
学习等式的乘除性质
猜一猜:
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
天平能保持平衡。
因为同时扩大相同的倍数或同时缩小为原来的几分之一,所以天平还保持平衡。
下面我们验证一下他说的有没有道理。
师出示教材第82页的课件演示。
谁来说一说实验操作的过程和结果。
天平的左边放了1个质量为x克的砝码,右边放了1个质量为10克的砝码。
算式为:
x=10
天平的左边又放了4个质量为x克的砝码,右边又放了4个质量为10克的砝码,天平仍然平衡。
谁能用一个式子表示天平两边的数量关系?
5x=5×
10
观察我们写出的两个等式,你能用一句话概括它们的关系吗?
等式x=10左边扩大到原来的5倍,右边也扩大到原来的5倍,等式仍成立。
等式x=10左右两边同时乘5,等式仍成立。
等式的两边同时乘同一个数,等式仍成立。
这也是等式的一条性质。
那么等式的两边同时除以同一个数(0除外),结果会怎样?
等式仍然成立。
我们一起观察实验。
课件演示天平左边放了6个质量为x克的砝码,右边放了6个质量为10克的砝码。
根据实验,谁能写出一个等式?
6x=6×
接着看下面的实验。
课件演示天平左边拿走3个质量为x克的砝码,右边拿走3个质量为10克的砝码。
观察后,你发现了什么?
天平左边拿走3个质量为x克的砝码,右边拿走3个质量为10克的砝码,
天平仍然平衡。
谁能写出一个等式,表示天平两边数量关系。
3x=3×
观察我们写出的两个等式,说一说它们是怎么变化的?
小组讨论。
等式6x=6×
10左右两边同时除以2,就变成了3x=3×
10。
10左右两边分别除以2,就变成了3x=3×
谁能说一说等式的两边怎么变化,等式仍然成立。
等式的两边同时除以同一个数,等式仍成立。
等式的两边同时除以同一个数(0除外),等式仍成立。
那种说法准确。
第二种。
因为0不能做除数。
师总结:
等式的两边同时乘或除以同一个数(0除外),等式仍成立。
通过学生的猜测、观察、比较、讨论,让学生自己发现结果,从而总结出等式的第二条性质】
三、巩固新知
填一填。
(a、b均不为0)
如果x+a=b,那么x+a-a=b○
如果x-a=b,那么x-a+a=b○
如果ax=b,那么ax÷
a=b○
4、
如果x÷
a=b,那么x÷
a×
1、-a,2、+a,3、÷
a,4、×
a
1、.等式的两边同时加上或减去(),等式仍然成立。
2、等式的两边同时乘或除以(),等式仍成立。
3、因为4x+5=12,所以4x+5-6=12-()。
4、5X=60,X=60÷
()。
5、2x+32=96,2x+32-32=96-()。
1、同一个数,2、同一个数(0除外),3、6,4、5,5、32
通过刚才的学习和练习,孩子们对《等式的性质》已经掌握,让我们再一起来看一下:
什么是《等式的性质》?
学习《等式的性质》,其实也是为我们后面学习《解方程》奠定基础。
1、教材第82页练一练。
2、4个判断题:
(1)因为5+5=10,所以(5+5)+2=10+3
。
(
(2)如果5x=10,则5x+5=10-5
)
(3)如果a=b,则a乘3,b扩大2倍,等式仍然成立。
(4)如果a=b,则a乘3,b除以3,等式仍然成立。
等式的基本性质
等式的两边同时加上或减去同一个数,等式仍然成立;
等式的两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
等式的性质分成两部分进行教学。
第一部分教学等式的加减性质:
既等式两边同加同减的问题,第二部分教学等式的乘除性质:
既等式左右两边同时乘或除以的问题。
第一部分通过学生的实验总结得到。
第二部分通过观察课件及,通过一系列问题引导学生,在这个过程中通过板书进行了整理,学生得出规律没有费很大的力气。
这一节课不仅要学生总结出等式的性质一这个规律,更要在得出规律的过程中,发展学生抽象概括的能力,培养学生把生活中的表象概括,归纳,抽象成数学语言的能力。
第三课时解方程
(1)
冀教版小学数学五年级上册第83—84页解方程
(1)。
1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:
用字母表示数,求未知数x)的基础上进行教学。
2、这节课为后面学习列方程解应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。
使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别,并能正确运用。
初步理解并掌握等式的基本性质,能用等式的性质正确解简易方程,如x+a=b,x-a=b。
培养学生初步的代数思想,感受简易方程与现实生活的密切联系。
理解“方程的解”和“解方程”之间的联系和区别。
理解形如a±
x=b的方程原理,掌握正确的解方程格式及检验方法。
一、复习铺垫
1、同学们我们已经学了方程的意义,你还记得什么叫方程吗?
2、你能判断下面哪些是方程吗?
说说你的判断理由。
(1)x+24=73
(2)4x<36+17
(3)72=x-16
(4)x+85
今天我们将利用等式的性质解决问题------解方程
(1)
先通过对前面所学知识的回顾,为下面的学习创设良好的问题情境,使学生兴趣盎然的投入到学习活动中去
】
二、探究新知
1、课件出示例1。
学生独立学习例1的有关内容。
给足够的时间让学生学习,让学生发现】
一顶帽子x元,一件上衣58元,一共用了79元。
根据图意列一个方程。
X+58=79
X+58=79这个方程怎么解呢?
利用加减法的关系:
X=79-58
利用等式的性质,在方程两边同时减去一个58,就得到X=21
方程左右两边为什么同时减58?
使方程左右两边只剩X。
方程左右两边同时减58,使方程左边只剩X,方程左右两边相等。
板书:
解:
X+58-58=79-58………方程两边同时减去58
X=21
“方程左右两边同时减58,使方程左边只剩X,方程左右两边相等。
”就是解这个方程的方法。
这个方程会解。
我们怎么知道X=21一定满足这个方程呢?
验算。
对了,验算方法是什么?
将X=58代入原方程,看方程的左边是否等于方程的右边。
验算:
方程的左边
=X+58
=79
=方程的右边
以后解方程时,要求检验的,要写出检验过程;
没有要求检验的,要进行口头检验,要养成口头检验的习惯。
力求计算准确。
【设计的意图:
自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点】
使方程左右两边相等的未知数的值,叫做方程的解。
如X=21是方程X+58=79的解。
求方程的解的过程叫做解方程。
谁来说说你想法?
“解方程”是指演算过程
“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
“方程的解”和“解方程”的两个解有什么不同?
“方程的解”的解,它是一个数值。
“解方程”的解,它是一个演变过程。
通过自主学习、组内交流、合作,达到培养学生自主、互助的精神】
2、课件出示例2。
学生独立思考,组内交流方法,学生板演。
学生板书:
3X=438
3X÷
3=438÷
3………方程两边同时除以3
X=146
教师引导学生讨论:
方程两边为什么同时除以3?
X=146是不是方程的解?
学生认识:
(1)方程两边同时除以3,利用的是等式的性质,即方程的两边同时除以一个相同的数(0除外),等式仍然成立。
(2)把X=146代入方程进行检验,方程的左边=146×
3=438=方程的右边,所以是方程的解。
1、教材第84页试一试。
(先让学生独立完成,在全班订正。
提示学生注意解题格式。
2、教材第84页练一练1题。
(学生自己计算等号两边的值,并进行比较。
1、判断题
A.3是方程5X=15的解。
B.X=2是方程5X=15的解。
2、填空题
X+3.2=4.6
X+3.2○(
)=4.6○(
X=(
3、教材第84页练一练2题。
这节课你学会了什么知识?
有哪些收获?
解方程时是根据等式的性质来解。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程解的过程叫做解方程。
想知道方程的解对不对可以代入原方程进行检验,方程左右两边相等是方程的解。
否则不是。
今天有这么多收获真为你们高兴。
1、判断。
(1)含有未知数的等式叫做方程。
---------------------------------(
(2)x+8是方程。
------------------------------------------------------(
(3)因为2=2×
2,所以a=a×
a。
------------------------------------(
(4)方程一定是等式。
-------------------------------------------------(
2、教材第84页练一练3、4题。
板书设计:
例1、解:
所以X=21是方程的解。
例2、解:
教学反思:
在教学的例1过程中,先让学生自己寻找解决方法,再重点突出“等式两边都加上或减去同一个数,等式仍然成立这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。
例2主要以学生自学为主,培养他们利用知识的能力。
从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
第四课时解方程
(2)
冀教版小学数学五年级上册的85—86页解方程
(2)。
本课是在学生刚刚学习了等式的性质和解一步的方程的基础上,进一步学习用等式的性质解两步的方程及掌握解决实际问题的方法。
经历猜数游戏、列方程解决问题以及认识方程的解和解方程的过程。
知道什么叫方程的解和解方程,能根据数量关系列方程解决问题,并能检验方程的解是否正确。
在猜数、列方程解决问题的活动中,体验列方程解决问题的价值,增强学好数学的信心。
会接两步计算的方程。
能准确地找出数量关系。
一、导入新课
上一节课,我们学习了什么?
学习了一步解方程的方法。
看这个方程:
2x-34=36,用一步解方程的方法可以解出来吗?
一步解不出来,那两步呢?
这节课我们就学习两步解方程的方法。
揭示课题----解方程
(2)。
通过练习,可以加深对有关等式性质和一步计算方程的理解,并能为自主探索两步计算的方程的解法提供有益的启示】
二、新知学习。
1、猜数游戏
课件出示例3的情景图。
同学们请认真阅读游戏方法,从这个游戏方法中你能得到哪些数学信息?
(学生独立思考)
一个数乘2加上10等于60。
那么