高中物理公式Word下载.docx
《高中物理公式Word下载.docx》由会员分享,可在线阅读,更多相关《高中物理公式Word下载.docx(16页珍藏版)》请在冰豆网上搜索。
|F1-F2|≤F≤|F1+F2|
4.力的正交分解:
Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
常见的力公式总结
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:
劲度系数(N/m),x:
形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:
摩擦因数,FN:
正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×
10-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×
109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq(E:
场强N/C,q:
电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:
F=BIL,B//L时:
F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:
f=qVB,V//B时:
f=0)
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:
静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:
磁感强度(T),L:
有效长度(m),I:
电流强度(A),V:
带电粒子速度(m/s),q:
带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
万有引力公式总结
1.开普勒第三定律:
T2/R3=K(=4π2/GM){R:
轨道半径,T:
周期,K:
常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:
F=Gm1m2/r2(G=6.67×
10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:
GMm/R2=mg;
g=GM/R2{R:
天体半径(m),M:
天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;
ω=(GM/r3)1/2;
T=2π(r3/GM)1/2{M:
中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;
V2=11.2km/s;
V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:
距地球表面的高度,r地:
地球的半径}
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
匀速圆周运动公式总结
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:
T=1/f
6.角速度与线速度的关系:
V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:
弧长(s):
米(m);
角度(Φ):
弧度(rad);
频率(f):
赫(Hz);
周期(T):
秒(s);
转速(n):
r/s;
半径(r):
线速度(V):
m/s;
角速度(ω):
rad/s;
向心加速度:
m/s2。
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
平抛运动公式总结
1.水平方向速度:
Vx=Vo
2.竖直方向速度:
Vy=gt
3.水平方向位移:
x=Vot
4.竖直方向位移:
y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:
tgβ=Vy/Vx=gt/V0
7.合位移:
s=(x2+y2)1/2,位移方向与水平夹角α:
tgα=y/x=gt/2Vo
8.水平方向加速度:
ax=0;
竖直方向加速度:
ay=g
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
竖直上抛运动公式总结
1.位移s=Vot-gt2/2
2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.推论Vt2-Vo2=-2gs
4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
(1)全过程处理:
是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:
向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
自由落体运动公式总结
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
匀变速直线运动公式总结
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>
0;
反向则a<
0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:
初速度(Vo):
加速度(a):
m/s2;
末速度(Vt):
时间(t)秒(s);
位移(s):
路程:
米;
速度单位换算:
1m/s=3.6km/h。
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
有关摩擦力的知识总结
1、摩擦力定义:
当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。
2、摩擦力产生条件:
①接触面粗糙;
②相互接触的物体间有弹力;
③接触面间有相对运动(或相对运动趋势)。
说明:
三个条件缺一不可,特别要注意“相对”的理解。
3、摩擦力的方向:
①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。
②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。
(1)“与相对运动方向相反”不能等同于“与运动方向相反”。
滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能
与运动方向成一夹角。
(2)滑动摩擦力可能起动力作用,也可能起阻力作用。
4、摩擦力的大小:
(1)静摩擦力的大小:
①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。
具体大小可由物体的运动状态结合动力学规律求解。
②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。
③效果:
阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。
(2)滑动摩擦力的大小:
滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。
公式:
F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。
说明:
①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。
②μ与接触面的材料、接触面的情况有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
5、摩擦力的效果:
总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。
滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。
能量守恒定律公式总结
1.阿伏加德罗常数NA=6.02×
1023/mol;
分子直径数量级10-10米
2.油膜法测分子直径d=V/s{V:
单分子油膜的体积(m3),S:
油膜表面积(m)2}
3.分子动理论内容:
物质是由大量分子组成的;
大量分子做无规则的热运动;
分子间存在相互作用力。
4.分子间的引力和斥力
(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:
外界对物体做的正功(J),Q:
物体吸收的热量(J),ΔU:
增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:
不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:
不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出
7.热力学第三定律:
热力学零度不可达到{宇宙温度下限:
-273.15摄氏度(热力学零度)}
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<
温度升高,内能增大ΔU>
吸收热量,Q>
0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
功和能转化公式总结
1.功:
W=Fscosα(定义式){W:
功(J),F:
恒力(N),s:
位移(m),α:
F、s间的夹角}
2.重力做功:
Wab=mghab{m:
物体的质量,g=9.8m/s2≈10m/s2,hab:
a与b高度差(hab=ha-hb)}
3.电场力做功:
Wab=qUab{q:
电量(C),Uab:
a与b之间电势差(V)即Uab=φa-φb}
4.电功:
W=UIt(普适式){U:
电压(V),I:
电流(A),t:
通电时间(s)}
5.功率:
P=W/t(定义式){P:
功率[瓦(W)],W:
t时间内所做的功(J),t:
做功所用时间(s)}
6.汽车牵引力的功率:
P=Fv;
P平=Fv平{P:
瞬时功率,P平:
平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:
P=UI(普适式){U:
电路电压(V),I:
电路电流(A)}
9.焦耳定律:
Q=I2Rt{Q:
电热(J),I:
电流强度(A),R:
电阻值(Ω),t:
10.纯电阻电路I=U/R;
P=UI=U2/R=I2R;
Q=W=UIt=U2t/R=I2Rt
11.动能:
Ek=mv2/2{Ek:
动能(J),m:
物体质量(kg),v:
物体瞬时速度(m/s)}
12.重力势能:
EP=mgh{EP:
重力势能(J),g:
重力加速度,h:
竖直高度(m)(从零势能面起)}
13.电势能:
EA=qφA{EA:
带电体在A点的电势能(J),q:
电量(C),φA:
A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK{W合:
外力对物体做的总功ΔEK:
动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:
ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<
90O做正功;
90O<
α≤180O做负功;
α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关
(5)机械能守恒成立条件:
除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:
1kWh(度)=3.6×
106J,1eV=1.60×
10-19J;
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
冲量与动量公式总结
1.动量:
p=mv{p:
动量(kg/s),m:
质量(kg),v:
速度(m/s),方向与速度方向相同}
3.冲量:
I=Ft{I:
冲量(Ns),F:
恒力(N),t:
力的作用时间(s),方向由F决定}
4.动量定理:
I=Δp或Ft=mvt–mvo{Δp:
动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:
p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:
Δp=0;
ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;
0<
ΔEK<
ΔEKm{ΔEK:
损失的动能,EKm:
损失的最大动能}
8.完全非弹性碰撞Δp=0;
ΔEK=ΔEKm{碰后连在一起成一整体}
9.弹性碰撞:
物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)
10.推论:
等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.机械能损失:
子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:
共同速度,f:
阻力,s相对子弹相对长木块的位移}
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:
合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒.
光的反射和折射公式总结
1.反射定律α=i{α;
反射角,i:
入射角}
2.绝对折射率(光从真空中到介质n=c/v=sini/sinj{光的色散,可见光中红光折射率小,n:
折射率,c:
真空中的光速,v:
介质中的光速,i入射角,j折射角}
3.全反射:
1)光从介质中进入真空或空气中时发生全反射的临界角C:
sinC=1/n;
2)全反射的条件:
光密介质射入光疏介质;
入射角等于或大于临界角
(1)平面镜反射成像规律:
成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:
成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:
紫光靠近底边出射见。
振动和波公式总结
1.简谐振动F=-kx{F:
回复力,k:
比例系数,x:
位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:
摆长(m),g:
当地重力加速度值,成立条件:
摆角θ<
100;
l>
>
r}
3.受迫振动频率特点:
f=f驱动力
4.发生共振条件:
f驱动力=f固,A=max,共振的防止和应用
5.机械波、横波、纵波:
波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;
波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃332m/s;
20℃:
344m/s;
30℃:
349m/s;
(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:
障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:
两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:
由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}
电场公式总结
1.两种电荷、电荷守恒定律、元电荷:
(e=1.60×
10-19C);
带电体电荷量等于元电荷的整数倍
2.库仑定律:
F=kQ1Q2/r2(在真空中){F:
点电荷间的作用力(N),k:
静电力常量k=9.0×
109Nm2/C2,Q1、Q2:
两点电荷的电量(C),r:
两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:
E=F/q(定义式、计算式){E:
电场强度(N/C),是矢量(电场的叠加原理),q:
检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:
源电荷到该位置的距离(m),Q:
源电荷的电量}
5.匀强电场的场强E=UAB/d{UAB:
AB两点间的电压(V),d:
AB两点在场强方向的距离(m)}
6.电场力:
F=qE{F:
电场力(N),q:
受到电场力的电荷的电量(C),E:
电场强度(N/C)}
7.电势与电势差:
UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:
WAB=qUAB=Eqd{WAB:
带电体由A到B时电场力所做的功(J),q:
带电量(C),UAB:
电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:
匀强电场强度,d:
两点沿场强方向的距离(m)}
9.电势能:
A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式){C:
电容(F),Q:
电量(C),U:
电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:
两极板正对面积,d:
两极板间的垂直距离,ω:
介电常数)常见电容器
14.带电粒子在电场中的加速(Vo=0):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平抛
垂直电场方向:
匀速直线运动L=Vot(在带等量异种电荷的平行极板中:
E=U/d)
平抛运动
平行电场方向:
初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
(1)两个完全相同的带电金属小球接触时,电量分配规律:
原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:
1F=106μ