电子温度计的毕业设计Word文档格式.docx

上传人:b****6 文档编号:19475333 上传时间:2023-01-06 格式:DOCX 页数:38 大小:301.10KB
下载 相关 举报
电子温度计的毕业设计Word文档格式.docx_第1页
第1页 / 共38页
电子温度计的毕业设计Word文档格式.docx_第2页
第2页 / 共38页
电子温度计的毕业设计Word文档格式.docx_第3页
第3页 / 共38页
电子温度计的毕业设计Word文档格式.docx_第4页
第4页 / 共38页
电子温度计的毕业设计Word文档格式.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

电子温度计的毕业设计Word文档格式.docx

《电子温度计的毕业设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《电子温度计的毕业设计Word文档格式.docx(38页珍藏版)》请在冰豆网上搜索。

电子温度计的毕业设计Word文档格式.docx

选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。

该系统的总体设计思路如下:

温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器为点阵字符LCD,1602液晶模块。

检测范围0摄氏度到120摄氏度。

本系统除了显示温度以外还可以设置一个温度值,对所测温度进行监控,当温度高于或低于设定温度时,开始报警并启动相应程序(温度高于设定温度时,风扇开;

当温度低于设定温度时,加热器开)。

中央微处理器AT89C51:

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

第2章方案论证

本章主要对毕业设计的题目进行了分析,根据要实现的功能,综合比较几种设计方法,提出了实现系统功能的最佳方案。

2.1题目分析

本设计是一个数字温度控制系统,能测量温度,并能在超限的情况下进行控制、调整,并报警。

2.1.1具体指标

正常工作温度范围:

0℃~120℃

相对温度误差≤0.5%:

2.1.2具体控制要求

根据设计的要求,要利用温度传感器实时温度。

当温度高于设定的温度时(60℃),打开降温装置进行调整使温度在设定的范围内。

当温度低于设定的温度时(5℃),打开升温装置进行调整使温度在设定的范围内。

同时要求能设定温度。

毕业设计的主要任务是能对温度进行自动的检测和控制。

设计中采用单片机来控制温度,因此要有温度的采集电路,键盘显示电路,温控电路,报警电路等几个部分。

要实现系统的设计要用到的知识点有单片机的原理及其应用,温度传感器的原理和应用,及键盘和显示电路的设计等。

2.2温度传感器的选择

2.2.1采用DS18B20温度传感器

在现代检测技术中,传感器占据着不可动摇的重要位置。

主机对数据的处理能力已经相当的强,但是对现实世界中的模拟量却无能为力。

如果没有各种精确可靠的传感器对非电量和模拟信号进行检测并提供可靠的数据,那计算机也无法发挥他应有的作用。

传感器把非电量转换为电量,经过放大处理后,转换为数字量输入计算机,由计算机对信号进行分析处理。

从而传感器技术与计算机技术结合起来,对自动化和信息化起重要作用。

AD590把被测温度转换为电流再通过放大器和A/D转换器,输出数字量送给单片机进行温度控制。

采用各种传感器和微处理技术可以对各种工业参数及工业产品进行测控及检验,准确测量产品性能,及时发现隐患。

为提高产品质量、改进产品性能,防止事故发生提供必要的信息和更可靠的数据。

由于系统的工作环境比较恶劣,且对测量要求比较高,所以选择合适的传感器很重要。

目前,国际上新型温度传感器正从模拟式向数字式、从集成化向智能化和网络化的方向飞速发展。

智能温度传感器DS18B20正是朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

因此,智能温度传感器DS18B20作为温度测量装置已广泛应用于人民的日常生活和工农业生产中。

美国DALLAS公司生产的DS18B20可组网数字温度传感器芯片外加不锈钢保护管封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

有独特的单线接口方式,DS1820在与微处理器连接时仅需要一条口线即可实现微处理器与DS1820的双向通讯;

其测温范围-55℃~+125℃,固有测温分辨率0.5℃;

支持多点组网功能;

多个DS1820可以并联在唯一的三线上,实现多点测温;

工作电源为3~5V/DC;

在使用中不需要任何外围元件。

DS18B20的性能特点如下:

(1)采用DALLAS公司独特的单线接口方式:

DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;

(2)在使用中不需要任何外围元件;

(3)可用数据线供电,供电电压范围:

+3.0V~+5.5V;

(4)测温范围:

-55~+125℃。

固有测温分辨率为0.5℃。

当在-10℃~+85℃范围内,可确保测量误差不超过0.5℃5~+125℃范围内,测量误差也不超过2℃;

(5)通过编程可实现9~12位的数字读数方式;

(6)用户可自设定非易失性的报警上下限值;

(7)支持多点的组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温

(8)负压特性,即具有电源反接保护电路。

当电源电压的极性反接时,能保护DS18B20不会因发热而烧毁,但此时芯片无法正常工作;

(9)DS18B20的转换速率比较高,进行9位的温度值转换只需93.75ms;

(10)适配各种单片机或系统;

(11)内含64位激光修正的只读存储ROM,扣除8位产品系列号和8位循环冗余校验码(CRC)之后,产品序号占48位。

出厂前产品序号存入其ROM中。

在构成大型温控系统时,允许在单线总线上挂接多片DS18B20。

图2:

DS18B20引脚

各引脚功能为:

I/O为数据输入/输出端(即单线总线),它属于漏极开路输出,外接上拉电阻后,常态下呈高电平。

UDD是可供选用的外部电源端,不用时接地,GND为地,NC空脚。

DS18B20的内部结构主要包括7部分:

寄生电源、温度传感器、64位激光(loser)ROM与单线接口、高速暂存器(即便筏式RAM,用于存放中间数据)、TH触发寄存器和TL触发寄存器,分别用来存储用户设定的温度上下限值、存储和控制逻辑、位循环冗余校验码(CRC)发生器。

图3:

DS18B20内部结构

所采用的总线主要有单线(1-WIRE)总线、I2C总线、SMBUS总线和SPI总线。

温度传感器作为从机可通过专用总线接口与主机进行通信。

智能温度控制器是在智能温度传感器的基础上发展而成的。

典型产品有DS18B20,智能温度控制器适配各种微控制器,构成智能化温控系统;

它们还可以脱离微控制器单独工作,自行构成一个温控仪。

DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

现在,新一代的“DS18B20”体积更小、更经济、更灵活。

使您可以充分发挥“一线总线”的长处。

另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作按协议进行。

操作协议为:

初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

2.4DS18B20的程序流程图

图4:

程序流程图

2.3显示器的选择

2.3.1采用LED数码管

数码管是一种半导体发光器件,其基本单元是发光二极管。

数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);

按能显示多少个“8”可分为1位、2位、4位等等数码管;

  按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。

共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管,共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮。

共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管,共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。

2.3.1数码管的概述

图5数码管

数码显示器是一种由LED发光二极管组合显示字符的显示器件,它使用了8个Led发光二极管,其中七个用于显示字符,一个显示小数点,所以通称为七段发光二极管数码显示器。

4位一体数码管,其内部段已连接好,引脚如图所示(数码管的正面朝自己,小数点在下方)。

a、b、c、d、e、f、g、dp为段引脚,S1、S2、S3、S4分别表示四个数码管的位。

2.4单片机的选择

2.4.1采用STC89C51单片机

STC89C51是由深圳宏晶科技公司生产的与工业标准MCS-51指令集和输出管脚相兼容的单片机。

2.4.2STC89C51主要功能及PDIP封装

STC89C51主要功能如表2-1所示,其PDIP封装如图4-2所示

主要功能特性

兼容MCS51指令系统

8K可反复擦写FlashROM

32个双向I/O口

256x8bit内部RAM

3个16位可编程定时/计数器中断

时钟频率0-24MHz

2个串行中断

可编程UART串行通道

2个外部中断源

共6个中断源

2个读写中断口线

3级加密位

低功耗空闲和掉电模式

软件设置睡眠和唤醒功能

表2-1STC89C51主要功能

2.4.3DS18B20引脚介绍

①主电源引脚(2根)

VCC(Pin40):

电源输入,接+5V电源

GND(Pin20):

接地线

②外接晶振引脚(2根)

XTAL1(Pin19):

片内振荡电路的输入端

③控制引脚(4根)

引脚RST/VPP(Pin9):

复位,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):

地址锁存允许信号

PSEN(Pin29):

外部存储器读选通信号

EA/VPP(Pin31):

程序存储器的内令外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指

④可编程输入/输出引脚(32根)

STC89C51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

P0口(Pin39~Pin32):

8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):

8位准双向I/O口线,名称为P1.0~P1.7

P2口(Pin21~Pin28):

8位准双向I/O口线,名称为P2.0~P2.7

P3口(Pin10~Pin17):

8位准双向I/O口线,名称为P3.0~P3.7

图2-2:

STC89C51封装图

单片机的诞生标志着计算机正式形成了通用计算机系统和嵌入式计算机系统两个分支。

通用计算机系统主要用于海量高速数值运算,不必兼顾控制功能,其数据总线的宽度不断更新,从8位、16位迅速过渡到32位、64位,并且不断提高运算速度和完善通用操作系统,以突出其高速海量数值运算的能力,在数据处理、模拟仿真、人工智能、图像处理、多媒体、网络通信中得到了广泛应用;

单片机作为最典型的嵌入式系统,由于其微小的体积和极低的成本,广泛应用于家用电器、机器人、仪器仪表、工业控制单元、办公自动化设备以及通信产品中,成为现代电子系统中最重要的智能化工具。

因此,单片机的出现大大促进了现代计算机技术的飞速发展,成为近代计算机技术发展史上一个重要里程碑。

所以51单片机是最理想的选择。

单片机属于典型的嵌入式系统,所以它是低端控制系统最佳器件。

单片机的开发环境要求较低,软件资源十分丰富,开发工具和语言也大大简化。

单片机的典型代表是Intel公司在20世纪80年代初研制出来的MCS51系列单片机。

MCS51单片机很快在我国得到广泛的推广应用,成为电子系统中最普遍的应用手段,并在工业控制、交通运输、家用电器、仪器仪表等领域取得了大量应用成果。

以MCS-51技术核心为主导的单片机已成为许多厂家、电气公司竞相选用的对象,并以此为基核,推出许多与MCS51有极好兼容性的CHMOS单片机,同时增加了一些新的功能,所以用AT89C51。

第3章系统的硬件设计

3.1单片机最小系统的设计

目前的单片机开发系统只能够仿真单片机,却没有给用户提供一个通用的最小系统。

由设计的要求,只要做很小集成度的最小系统应用在一些小的控制单元。

其应用特点是:

(1)全部I/O口线均可供用户使用。

(2)内部存储器容量有限(只有4KB地址空间)。

(3)应用系统开发具有特殊性

图6单片机最小系统电路

电路以STC89C51单片机最小系统为控制核心,测温电路由DS18B20提供,输入部分采用四个独立式按键S1、S2、S3、S4。

数码管显示部分

3.2温度传感电路设计

温度传感器系统

DS18B20内部结构主要由四部分组成:

64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。

DS18B20的管脚排列如图3.2所示。

图3.2DS18B20管脚图

在硬件上,DS18B20与单片机的连接有两种方法,一种是VCC接外部电源,GND接地,I/O与单片机的I/O线相连;

另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。

无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻.我们采用的是第一种连接方法,如图3.3所示:

把DS18B20的数据线与单片机的13管脚连接,再加上上拉电阻。

图7温度传感电路

DS18B20有六条控制命令,如表3-1所示:

表3-1DS18B20控制命令

指 

约定代码

操 

作 

说 

 

温度转换

44H

启动DS18B20进行温度转换

读暂存器

BEH

读暂存器9个字节内容

写暂存器

4EH

将数据写入暂存器的TH、TL字节

复制暂存器

48H

把暂存器的TH、TL字节写到E2RAM中

重新调E2RAM

B8H

把E2RAM中的TH、TL字节写到暂存器TH、TL字节

读电源供电方式

B4H

启动DS18B20发送电源供电方式的信号给主CPU

CPU对DS18B20的访问流程是:

先对DS18B20初始化,再进行ROM操作命令,最后才能对存储器操作,数据操作。

DS18B20每一步操作都要遵循严格的工作时序和通信协议。

如主机控制DS18B20完成温度转换这一过程,根据DS18B20的通讯协议,须经三个

步骤:

每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。

3.3温度控制电路的设计

图8温度控制电路

3.4DS18B20测温原理

器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;

高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值[13]。

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;

当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据[14]。

表1DS18B20温度转换时间表

R1

R0

分辨率/位

温度最大转向时间/ms

9

93.75

1

10

187.5

11

375

12

750

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

表2 一部分温度对应值表

温度/℃

二进制表示

十六进制表示

+125

0000011111010000

07D0H

+85

0000010101010000

0550H

+25.0625

0000000110010000

0191H

+10.125

0000000010100001

00A2H

+0.5

0000000000000010

0008H

0000000000001000

0000H

-0.5

1111111111110000

FFF8H

-10.125

1111111101011110

FF5EH

-25.0625

1111111001101111

FE6FH

-55

1111110010010000

FC90H

3.4报警电路设计

报警电路中加一PNP三极管驱动,基极接单片机P11口,当端口变成低电平时,驱动三极管会导通,VCC电压加载到蜂鸣器使其发声、报警发光二极管亮,如图4.4.1。

图9报警电路

3.5显示电路的设计

如图4.5.1,采用LG3641BHLED数码管显示电路采用4位共阳LED数码管从P14,P15,P16,P17串口输出段码。

用PNP三极管进行驱动,当相应的端口变成低电平时,驱动相应的三极管会导通,驱动三极管给数码管相应的位供电,这时只要P0口送出数字的显示代码,数码管就能正常显示数字。

图10数码管显示电路

3.6电源电路的设计

我们选用的是串联起来的3节1.5v的5号电池,从经济的角度考虑的,干电池比较便宜,但其还有不足之处,干电池存储的是电量。

随着电量的消耗,它的供电电压就会不断的下降,所有我们需要使用一个稳压器,来保证电源供给的是标准的5v电压。

3节1.5v串联起来产生的和电压最小5v,而本文的AT89C52单片机工作电压的范围是4v—5.5v,在该系统中我们使用的电压是5v。

这时我们可以用LM7805稳压器来产生稳定的5v电压[15]。

稳压电路如下图4.6.1所示:

图11LM7805稳压电路

在该电路中,C12是极性电容,起到稳压的作用,而C2是非极性电容,它起的作用是滤除输出电压中不是直流的成分,即滤波。

LM7805稳压芯片的稳压压差为2V左右,在实际使用中容易出现电压过低的状态,此时提供的电源达不到系统的电源要求,会出现程序跑飞的现象,而另一款LM2904的稳压压差可以达到40mV,效果比LM7805好很多,但考虑到经济原因我们采用LM7805,只要在稳压前端提供较大的电源供应即可。

第4章系统的软件设计

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,按键扫描。

4.1主程序

主程序的主要功能是负责读出并处理DS18B20的测量的当前温度值,温度的实时显示,并根据设置的上下限判断是否报警。

系统开始运行时,温度传感器测量并计算温度值通过P1.0口传输进单片机里进行处理,经过处理后的数据再通过P0口传输到数码管进行显示。

通过按键设置温度报警界限,当超过报警界限时单片机将相应的数据通过P1.1口传输进行声光报警。

温度测量每1s进行一次。

这样可以在一秒之内测量一次被测温度,其程序流程见图12所示。

4.2读出温度子程序

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如图13所示

图13读温度流程图

4.3温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 其它考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1