完整版电涡流位移传感器.docx

上传人:b****3 文档编号:1946688 上传时间:2022-10-25 格式:DOCX 页数:19 大小:21.96KB
下载 相关 举报
完整版电涡流位移传感器.docx_第1页
第1页 / 共19页
完整版电涡流位移传感器.docx_第2页
第2页 / 共19页
完整版电涡流位移传感器.docx_第3页
第3页 / 共19页
完整版电涡流位移传感器.docx_第4页
第4页 / 共19页
完整版电涡流位移传感器.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

完整版电涡流位移传感器.docx

《完整版电涡流位移传感器.docx》由会员分享,可在线阅读,更多相关《完整版电涡流位移传感器.docx(19页珍藏版)》请在冰豆网上搜索。

完整版电涡流位移传感器.docx

完整版电涡流位移传感器

传感器课程设计

燕山大学

课程设计说明书

题目:

电涡流位移传感器设计

学院(系):

电气工程系

年级专业:

14级工业仪表1班

号:

131********0

学生姓名:

韩升升

指导教师:

程淑红

教师职称:

副教授

1

传感器课程设计

燕山大学课程设计(论文)任务书

院(系):

电气工程学院

基层教学单位:

电子实验中心

学生姓

学号

专业(班级)

设计题

电涡流位移传感器设计

1

2

答辩并写好任务书

画出电路图和探头部分结构图

【1】贾伯年传感器技术东南大学出版社2007

【2】林志琦

信号发生电路原理与实用设计

人民邮电出版社

2010

【3】ArthurB.Williams

术出版社2008

著宁彦卿译电子滤波器设计

科学技

指导教师签

基层教学单位主任

签字

说明:

此表一式四份,学生、指导教师、基层教学单位、系部各一份。

年月

2

传感器课程设计

摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

4

5

5

6

6

6

8

电涡流位移传感器设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

一、总体设计方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

二、电涡流传感器的基本原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

2.1电涡流传感器工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

2.2电涡流传感器等效电路分析⋯⋯⋯⋯⋯⋯⋯⋯⋯

2.3电涡流传感器测量电路原理⋯⋯⋯⋯⋯⋯⋯⋯⋯

三、实验数据⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

14

3.1

3.2

电涡流透射式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

电涡流反射式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

15

15

个人小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

17

17

3

传感器课程设计

摘要

随着现代测量、控制盒自动化技术的发展,

传感器技术越来越受到人们的

重视。

特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在

各个领域的作用也日益显著。

传感器技术的应用在许多个发达国家中,

经得到普遍重视。

在工程中所要测量的参数大多数为非电量,

促使人们用

电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,

研究如何能正确和快速的非电量技术。

电涡流传感器已成为目前电测技术

中非常重要的检测手段,广泛的应用于工程测量和科学实验中。

关键词:

电涡流式传感器

传感器技术电量非电量

4

传感器课程设计

电涡流位移传感器设计

一、总体设计方案

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地

测量被测金属导体距探头表面的距离。

它是一种非接触的线性化计量

工具。

电涡流传感器能准确测量被测体(必须是金属导体)与探头端

面之间静态和动态的相对位移变化。

电涡流传感器以其长期工作可靠

性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、

不受油污等介质的影响、结构简单等优点。

构成传感器。

根据下面的组成框图,

根据组成框图,具体说明各个组成部分的材料:

(1)敏感元件:

传感器探头线圈是通过与被测导体之间的相互作用,从

而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在

框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨

胀系数小。

(2)传感元件:

前置器是一个用环氧树脂灌封并带有导线的装置,测量

电路完全装在前置器中。

(3)测量电路:

是由涡流传感器构成,将测量信息转换为直流电量输出。

本电路采用西勒振荡电路产生振荡频率,在经过滤波产生直流电量。

5

传感器课程设计

二、电涡流传感器的基本原理

2.1电涡流传感器工作原理

根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流

i

1

时,线圈周围空间必然产生正弦交变磁场

属导体表面产生感应电流,即电涡流,如图

H,它使置于此磁场中的被测金

1

2-2中所示。

与此同时,电涡

流i又产生新的交变磁场H;H与H方向相反,并力图削弱H,从而导致探

2

2

2

1

1

头线圈的等效电阻相应地发生变化。

其变化程度取决于被测金属导体的电

阻率ρ,磁导率μ,线圈与金属导体的距离x,以及线圈激励电流的频率

等参数。

如果只改变上述参数中的一个,而其余参数保持不变,则阻抗

就成为这个变化参数的单值函数,从而确定该参数的大小。

f

Z

电涡流传感器的工作原理,如图

2-2所示:

2.2电涡流传感器等效电路分析

为了便于分析,把被测金属导体上形成的电涡流等效成一个短路环中

的电流,这样就可以得到如图

2-3所示的等效电路。

6

传感器课程设计

图中R1,L1为传感器探头线圈的电阻和电感,

短路环可以认为是一匝

短路线圈,其中R2,L2为被测导体的电阻和电感。

探头线圈和导体之间存

在一个互感M,它随线圈与导体间距离的减小而增大。

U1为激励电压,根

据基尔霍夫电压平衡方程式,上图等效电路的平衡方程式如下:

经求解方程组,可得I1和I2表达式:

由此可得传感器线圈的等效阻抗为

从而得到探头线圈等效电阻和电感。

:

通过式(2-4)的方程式可见:

涡流的影响使得线圈阻抗的实部等效

电阻增加,而虚部等效电感减小,从而使线圈阻抗发生了变化,这种变化

称为反射阻抗作用。

所以电涡流传感器的工作原理,

实质上是由于受到交

变磁场影响的导体中产生的电涡流起到调节线圈原来阻抗的作用。

7

传感器课程设计

因此,通过上述方程组的推导,可将探头线圈的等效阻抗

下一个简单的函数关系:

Z表示成如

其中,x为检测距离;μ为被测体磁导率;ρ为被测体电阻率;f为线

圈中激励电流频率。

所以,当改变该函数中某一个量,而固定其他量时,就可以通过测量

等效阻抗Z的变化来确定该参数的变化。

在目前的测量电路中,有通过测

量ΔL或ΔZ等来测量x,ρ,μ,f的变化的电路。

2.3电涡流传感器测量电路原理

电涡流传感器常用的测量电路有电桥电路和谐振电路,阻抗

一般用电桥,电感L的测量电路一般用谐振电路,其中谐振电路又分为调

频式和调幅式电路。

Z的测量

8

传感器课程设计

电桥法是将传感器线圈的等效阻抗变化转换为电压或电流的变化。

2-4为电桥法的原理图。

图中A,B两线圈作为传感器线圈。

传感器线圈与两电容的并联阻抗作

为电桥的桥臂,起始状态,使电桥平衡。

在进行测量时,由于传感器线圈

的等效阻抗发生变化,使电桥失去平衡,将电桥不平衡造成的输出信号进

行放大并检波,就可得到与被测量成正比的输出。

涡流线圈组成的差动式传感器。

电桥法主要用于两个电

谐振法是将传感器线圈的等效电感的变化转换为电压或电流的变化,

传感器线圈与电容并联组成

LC并联谐振回路,其谐振频率为,

谐振时回路的等效阻抗最大,

Z=L/RC,其中R为谐振回路等效电阻。

当线圈电感L发生变化时,回路的等效阻抗和谐振频率都将随L的变化为变

化,因此可以利用测量回路阻抗的方法或测量回路谐振频率的方法间接测

出传感器的被测值。

调频式电路是通过测量谐振频率的变化来进行测量,

其结构简单,便

于遥测和数字显示;而调幅式电路是通过测量等效阻抗的变化来进行测

量,由于采用了石英晶体振荡器,因此稳定性较高。

下面以调幅式测量电

路为例,说明谐振法的测量原理,如图

2-5所示:

9

传感器课程设计

从图中可以看出LC谐振回路由一个频率及幅值稳定的晶体振荡器提

供一个高频信号激励谐振回路。

LC回路的输出电压为

,其

中i0为激励电流,Z为等效阻抗。

测量中,当探头线圈远离被测金属导体

时,LC回路处于谐振状态,谐振回路上的输出电压最大;当探头线圈接近

被测金属导体时,线圈的等效电感发生变化,

导致回路失谐而等效阻抗发

生变化,使输出电压下降。

输出的电压再经过放大,检波,滤波后由指示

仪器(电压表)读出,或输入示波器显示电压波形。

这样就实现了将

关系转换成V-x关系,通过对输出电压的测量,可确定电涡流传感器线圈

L-x

与被测金属导体之间的距离

x。

电涡流传感器就是利用涡流效应,将非电

量转换为阻抗的变化而进行测量的

本设计采用涡流转换器,其工作原理是谐振式调幅电路。

涡流转换器等效电路图

图1

从涡流转换的等效电流图可分析出线圈震荡电流有涡流转换器提供。

是由其中的西勒振荡电路提供震荡电流。

下图为西勒振荡电路。

10

 

传感器课程设计

西勒震荡电路图

西勒振荡器是一种改进型的电容反馈振荡器,

进电路。

这种电路频率稳定性高。

因为可通过

数不受C4影响,所以在整个波段中振荡

图2

它是克拉波电路的改

C4改变振荡频率,且接入系

振幅比较平稳。

真两点使西勒电路的频率能在比较宽的范围内调节。

西勒振荡电路的频率为

f1/2LC

'

'

CCC3

1

2

C

C4

'

'

'

'

'

CCCCCC

CCC0;

式中,

1

2

2

3

3

1

其中,

1

1

'

CCCi

2

2

C3

CC3

1

C2

时,振荡频率为

1

f0

2L(CC4)

3

C1

C2

与受输入输出电容(包括闲散电容)影响的

振荡频率的稳定性。

无关,因此提高了

C4

C3

西勒振荡电路的振荡频率可以通过改变

来调整。

比克拉波电

11

传感器课程设计

路取值大!

故频率覆盖系数大,易调整,频率稳定度高,实际应用较多。

西勒振荡等效电路图

图3

上图为在实际应用中的西勒电路改进型,在实际应用中可用可调电

感,而可调电容换成固定电容。

在大多数电视机中大多采用西勒振荡电路。

此时的振荡频率为

f1/2LC

由涡流转换器电路图可知,西勒电路产生的电流从振荡器输出端输出

后,经过上下两部分滤波电路,滤去交流。

剩下直流电流从转换器的输出

端输出。

上部滤波电路为

12

传感器课程设计

LC滤波电路1

LC低通滤波器后由输出端输出直流分量。

下部LC滤波器在二极管之后如图所示,

图7

直流电由输入端进入后经由

LC滤波电路2

图8

由于二极管有单向导通性,因此有部分正弦波经由二极管,

而形成半

波正弦波。

在通过下部LC低通滤波器滤去交流分量。

从而输出直流分量。

13

传感器课程设计

三、实验数据

电涡流传感器有传感器有两种结构类型,

分别为透射式和反射式。

透射试验和反射实验

3.1电涡流透射式

穿L2,这这种类型与反射式主要不同在于它采用低频激励,贯穿深

度大,适用于测量金属材料的厚度。

下图为其工作示意图,

透射式电涡流传感器工作原理图

图9

传感器由发射线圈L1和接受线圈L2组成,它们分别位于被测金属板的

L1两端时,将在L2两端产生感应电压。

两线圈之间无金属导体,L1的磁场就能直接贯时电压达到最大。

L1的磁场,造成电压下降。

金属板厚度越大,

两侧。

当低频激励电压加到线圈

当有金属

板后,其产生

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1