数学交换律和结合律教学设计讲课教案.docx
《数学交换律和结合律教学设计讲课教案.docx》由会员分享,可在线阅读,更多相关《数学交换律和结合律教学设计讲课教案.docx(13页珍藏版)》请在冰豆网上搜索。
数学交换律和结合律教学设计讲课教案
——《加法交换律和加法结合律》说课稿
一、说教材
(一)教材分析
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。
本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。
加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。
这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。
教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。
教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析
(三)目标定位
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:
通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:
通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:
通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学重点:
使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。
教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:
为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行
1、在情境中初步感知规律
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:
数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。
)
2、在例举中验证规律
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:
教师充分让学生自主活动,规律发现的过程。
一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。
)
3、在反思中概括规律
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:
通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)
(2)用字母来表示加法交换律
(设计意图:
学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。
)
4、练习
(1)填空、
(2)判断、(3)验算
(设计意图:
新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。
)
(二)探索加法结合律:
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?
”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:
抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。
)
2、在计算中验证规律
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:
学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
3、揭示加法结合律
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:
这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。
由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。
)
三、实践应用
(设计意图:
我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次
(1)想想做做1:
运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5
(设计意图:
让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。
为后头运用加法运算律进行简便运算打好基础。
)
2、拓展练习,分二个层次
(1)在方框里填上适当的数。
通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:
30+28+70+45+72。
通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励
(设计意图:
及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。
)
五、教法、学法
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。
”
板书设计:
(设计意图:
简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。
)
教研活动是一个教师团队快速成长的生命力,我们深知教研活动的重要性,非常荣幸的是我执教的《加法运算律》得到了很多老师、特别是高研班老师们的共同指导,体现集体的力量,让我们大家在这样的环境中共同成长。
学生从一年级开始,就在加法的计算和验算中接触过四则运算中的一些性质和规律,有较多的感性认识,这是学习加法交换律和结合律的基础;而本课的学习,教材安排不完全归纳推理,是属于理性的总结和概括,对于学生来说还是比较抽象的,学生不易理解和掌握。
一、本课教材总体思路
基于教材的上述特点,我们采用了从学生熟悉的实际问题的解答引入,让学生通过观察、比较、分析,找到实际问题不同解法之间的共同特点,初步感受运算律;然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。
教材有意识的让学生运用已有经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性认识发展到理性认识,合理地建构知识。
二、对加法交换律教学的思考
1、用自己的方法表示加法运算律
第一次试上:
学生在建立了28+17=17+28等式的概念后,再自己举符合这类规律的式子,学生能举出很多,可是有点知其然,不知其所以然。
老师在处理这一环节的时候,没有充分考虑举例的价值,只是一味的举例,学生举了很多,而老师也没有适时的总结——任意的两个自然数,不管是一位数、两位数还是几位数相加交换位置都符合这样的规律。
正是在这个环节的处理不够到位,在接下来让学生用一个式子来概括这种规律,学生显得有些茫然,不知道从何入手。
第二次试上:
总结了第一次教学的经验,在第二次试上的时候老师突出了教学重点——为什么可以用等于号来连接,引导学生进行计算后,得到结果相同才能用等于号连接,在举例的过程中也让学生分别说出一个式子,并计算结果,再交换位置计算结果,然后才能用等于号连接。
这样学生对于加法交换律的体验就更加深刻了。
只是在这个环节的处理上应该让学生同桌口头举例,而不要写下来,这样可以节约时间,为下面教学第二个运算律争取更多的时间。
2、对交换律教材编写的想法
看了张齐华老师上的加法交换律一课的课堂实录他把加法交换律用一课时来完成的。
在这个一课时中老师尽情的挖掘加法交换律中的内涵,让学生思考,证明。
其实如果要让学生真正的领悟其中的精髓,是应该用一节课来和大家共同解读。
所以在评课的时候有的老师提出建议,其实我们可以进行适当的教材整合,把加法交换律和乘法交换律放在同一课时,在彻底理解加法交换律的基础上,学生很自然的能迁移到乘法交换律中,这样的课堂可能更顺畅,更容易让学生感受到交换律的意义与价值。
三、加法结合律的教学的看法
在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。
这样的教学让学生感受加法结合律的特点:
加数位置没有改变,运算顺序改变了,和没变。
这样的教学显得顺畅,但是新意不够,学生投入的激情不够。
所以我们还在探索、反思是否有更好的题材与方法来教学加法结合律。
通过说课、上课、评课、磨课的形式,充分发挥每一个老师的聪明才智,老师们都能出谋划策,在不断试上、评课、磨课的过程中,享受着过程带来的收获,不光是上课老师有收获,其他老师也有收获,这样的收获不光是对这一节课,更多的是对这一个单元的理解,而且对老师自身更是一个提高。
《运算律》听课简录
南京市北京东路小学张齐华
*课前谈话:
你们觉得张老师有多大了?
从哪儿看出来的?
师:
喜欢听故事吗?
生:
喜欢。
师:
那我就给大家讲一个朝三暮四的故事。
(故事略)根据故事我们可以列出怎样的等式?
生:
3+4=4+3
师:
观察这一等式,你有什么发现?
生:
我发现,任意两数相加,交换它们的位置,和不变。
师:
大家同意这个结论吗?
(意见不一)的确,仅凭一个特例就得出这样的结论,未免太草率一些,但我们不妨把这个结论看作一个猜想(老师随即将结论中的“。
”号改成“?
”号)。
既然是猜想,我们就应去——
生:
验证。
【随想:
张老师从一则有趣的故事引出3+4=4+3的等式,而由等式很容易就能联想到在加法中交换两数位置,和不变的结论,似乎很自然。
然而张老师这时很突然说仅凭一个特例就能得出结论吗?
引起了学生的深深反思,并以此作为引发猜想的导为线。
】
师:
我们该做