西门子PG燃气轮机检修规程Word文档下载推荐.docx

上传人:b****5 文档编号:19139517 上传时间:2023-01-04 格式:DOCX 页数:66 大小:67.98KB
下载 相关 举报
西门子PG燃气轮机检修规程Word文档下载推荐.docx_第1页
第1页 / 共66页
西门子PG燃气轮机检修规程Word文档下载推荐.docx_第2页
第2页 / 共66页
西门子PG燃气轮机检修规程Word文档下载推荐.docx_第3页
第3页 / 共66页
西门子PG燃气轮机检修规程Word文档下载推荐.docx_第4页
第4页 / 共66页
西门子PG燃气轮机检修规程Word文档下载推荐.docx_第5页
第5页 / 共66页
点击查看更多>>
下载资源
资源描述

西门子PG燃气轮机检修规程Word文档下载推荐.docx

《西门子PG燃气轮机检修规程Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《西门子PG燃气轮机检修规程Word文档下载推荐.docx(66页珍藏版)》请在冰豆网上搜索。

西门子PG燃气轮机检修规程Word文档下载推荐.docx

入转子。

接着下面运作的叶片圈得到低压低温的空气。

冷却空气流流经压气机圆盘中的孔而进入转子内部,再经过下游压气机圆盘里的圆盘衬套上

的孔,经过把最后的压气机圆盘与最先的透平圆盘连起来的管道,再经过透平圆盘上的衬套

孔,进入到第2圈,第3圈,第4圈的叶片。

最后冷却空气进入热态气体流。

使衬套包满一层薄薄的冷空气。

这种冷空气流能确保作为支撑部件的转子缸能浸没在来自四面八方的空气中,甚至浸没在透

平部件中,而阻止产生额外的热应力;

如果在负荷改变与急骤启动时,这种新增加的热应力

能使转子变形。

所有压气机动叶都能拆卸安装而不必取出转子。

1.4静叶持环及其支撑

压气机灼热的后部静叶环与透平静叶都装在静叶持环中;

持环能拆卸安装而不用取出转子。

垂直提升地将上部静叶持环卸下后,下部静叶持环能旋转180°

也能被提升起来。

所有静叶持都是由外部壳体悬吊起来的,以便使静态的与运作的部件能自由产生热膨胀。

于偏心轴套上的销钉能确保相对于轴中心线的静叶持环,有正确的同心度在垂直中心线的顶

部与底部,进行微调时,旋转偏心轴套。

如果要调节轴向位移,可使用一个旋转对称的导向键与键槽件。

压气机件中的环形间隙能渗出足够的空气,确保压气机在低速,特别是在启动与停车时能稳

定的工作。

四条渗出线都与缓冲阻尼器相连,通向排气扩压器,此外,冷却空气线使透平静态叶片圈2

与圈4以及排气箱得到在压气机位置抽出的冷却空气,因为这个位置有适宜的压力。

压气机导向叶片第一圈的间距是可变的。

导杆将外部叶片末端的枢轴连到一调节环上,调节

环依圆周方向旋转。

改变这些导向叶片的间距,就能将压气机吸入空气的容量调节到启动、停机与部分负载操作所需要的量。

接着出现的静态叶片圈的叶片牢固地固定在有燕尾叶片根

的环上。

这些环装入外部箱或静态静叶持环的圆周槽里。

对转子与振动缓冲阻尼的密封是靠

内部环来得到的,与内部环相连的叶片都与枢轴或T形叶片根相配。

如果旋转静态静叶上

的环与配套的内环,就可得到取下这些叶片所要求的间距,即两个邻近圈旋转叶片之间的间

距。

透平静叶及其外部围带都安装在静叶持环内表面的相应槽沟里。

第2圈到第4圈的内部围带附

盖在扇形环上,将转子密封住。

静叶持环与所有透平叶片都经压缩空气冷却。

这些压缩空气经过静叶持环与外部围带之间的

中空地带,也经过空心的导向叶片。

在第1圈到第3圈,这种空气流从叶片出来进入热气流洗提器而在第2圈到第4圈时,这种空气流既充当冷却剂,也充当内部迷宫式密封。

1.5燃烧室

燃烧室由一环状火焰筒与24个燃烧器组成。

火焰筒是一个双筒型,包括一个中心体和一个压力套筒。

前者封住转子,没有壳体中分面,后者被中分面水平横截,燃烧器都在这一部分。

热屏蔽保护这三个铸件不受热气流的浸入。

冷却空气流从压气机出口扩压器出来,就分道扬镖:

绝大部分通过燃烧器的对角线旋流器进入燃烧地区。

一小部分空气流使火焰筒中的热屏蔽板冷却。

外部室与火焰筒压力套筒都有人孔;

通过人孔

可以进入火焰筒的内部。

热屏蔽与燃烧器都可以通过人孔进行检查与换新,(如有必要的话)

使用内窥镜从这里可以达到下游的第2圈的叶片。

环状燃烧空间中的24个燃烧器能产生相当

均匀的温度,分布在透平的上游。

图h燃机结构

2主要技术规范

2.1燃气轮机型号:

SGT5-4000F(V94.3A)

2.2制造厂:

上海电气

2.3产品编号:

800628、800691

2.4型式:

单轴、环形燃烧室、冷端输出、侧向进气、轴向排气

2.5额定功率:

272MW(ISW况)/259MW(性能保证工况)

2.6热效率:

37.7%

2.7点火转速:

400rpm

2.8自持转速:

1560r/min

2.9压气机:

15级轴流式,压比17

2.10透平级数:

4级

2.11燃烧室型式:

环型燃烧室

2.12转子结构型式:

中心拉杆轮盘式

2.13燃烧器个数:

24个

2.14透平动叶进口初温:

1230C

2.15进气系统:

自清洁过滤系统

2.16燃机排气压力:

33.87hPa(ISO)

2.17燃机排气温度:

591/594C

2.18燃机排气流量:

648/647kg/s

2.19天然气压力:

~2.87MPa

2.20燃机进天然气流量:

13.7/13.8kg/s

2.21工作转速:

3000r/min

2.22临界转速:

1300r/min

2.23外形尺寸、重量:

图2:

燃机的外型尺寸和重量

序号

项目

重量约

(kg)

尺寸(mm)

LXWXH或LXD

1

压气机轴承缸上半

压气机轴承缸下半

9100

1300x4050x2050

2

压气机静叶装配组件1上半(包括IGV附件)压气机静叶装配组件1下半(包括IGV附件)

21,500

3050x3250x1550

3

压气机静叶装配组件2上半

压气机静叶装配组件2下半

6000

1200x2700x1350

1200x2700x1350

4

2缸上半

11,300

1350x5050x2350

5

24个燃烧器

2000

1000x400

6

3缸上半

24,200

3150x5050x2350

7

燃烧室外壳上半燃烧室外壳卜半

3600

1250x4100

8

燃烧室内壳

11,600

1700x3100

9

转子

81,400

9750x3250

10

透平静叶装配组件上半

透平静叶装配组件下半

14,800

1750x4050x1900

11

透平轴承缸及内衬

17,700

1800x4300

*

燃机压气机和重(5%的公差)

308,000

12

中间轴

5,290

13

压气机轴承外盖

413

14

排气扩散段

3,128

3检修策略与检修周期

3.1概述

燃机的特性是使用空气作为工作介质,并直接将燃料喷入压缩空气中。

其中包函的染污物和

灰尘能引起结垢和腐蚀。

燃机的另一个特性是高温运行,这能引起热应力和金属疲劳,也能

造成热通道部件的氧化。

如其它机械,燃机也会在运行过程中磨损,通过维护来发现并控制磨损,同时可以修复或更

换磨损件。

只要维护得当,尽管有上述特性,燃机也能够保持较高的运行可靠性和可用性。

制造商的维护说明书是集合了一大批燃机的维护经验编成的,并不断更新。

维护措施的效力

主要是依赖于运行与制造商之间的信息与经验的交流。

电厂经验是燃机或燃机部件改进的直

接途径。

西门子燃机特性是通过超前的、便于维护的、耐用的设计,因此允许长的检修间隔并减少维护工作。

日常维护”或运行维护”包括在燃机和其辅助系统在运行或备用的情况下执行的不对设备的

可用性产生负面影响的所有工作。

维护包括维持电厂规定状况的措施。

从本质上说这些热通道部件的磨损是时间和循环过程的函数,时间对磨损的影响包括:

在高金属温度下的机械载荷引起的内部材料蠕变损害;

热通道部件的蠕变变形;

随过滤后的空气或燃料带入热通道的细小灰尘颗粒引进的侵蚀;

当使用清洁”燃料时在高金属温度时产生氧化;

由于污染的燃料产生的附带的导致材料损失的腐蚀;

由注水引起的金属温度提高、扰动、抗氧化层脱落附带的机械载荷;

促成磨擦磨损的振动。

循环磨损由燃机启动、停机及快速的温度变化或在跳机或甩负荷时的保护措施产生的应力引

起。

热通道部件的循环磨损包括:

低周疲劳(LCF),是蠕变疲劳的组合;

相对滑动引起的磨擦磨损。

低周疲劳的影响在循环过程中恶化,因为氧化沉积物产生裂纹并剥落,氧化进程在循环加载

的过程中加剧。

因此是这两种影响共同作用的结果。

3.2当量运行小时公式

燃机中承受应力最大的部件是热通道部件,如燃机燃烧室内层和燃机叶片。

因此热通道部件

需要更多的维护工作,因此将检修,热通道检修和大修之间运行周期基于这些部件累积的磨损是合理的。

这些累积的磨损依照当量运行小时数取得。

按照这里对当量运行小时数的计算适用于所有西门子环形燃烧室设计的燃机。

取决于时间的和取决于周期性磨损因数与公式配合来计算当量运行小时数。

不同种类的磨损

被分配有各自的适合温度范围的加权因数,以便累积的应力可以换算为基本负荷下的当量运

行小时。

时间和周期性组合磨损因数的不同模型用文字来描述。

选择一个易用的模型按照一

个基于当量运行小时数的方法来衡量低周疲劳(LCF)。

按照运行温度水平的抗蠕变强度允许按照加权因数b1衡量。

燃机首次启机后,需通过测量确定基本负荷水平的燃机出口温度。

通过同时测量的压气机进口温度0ci自动修正出口温度0

ot来保证基本负荷输出按照压气机进口温度调整,同时维持大致稳定的燃机进口温度。

当量运行小时数的计算:

T)

EOH=气、

K-+Vr.+/xwxb}t}i=i

tEOH=当量运行小时

ni=开机次数

a〔=10(开机因数)

ti=由快速温度变化产生的当量小时数

n=快速温度变化的次数

ti=基本负荷的运行小时

b1=1(基本负荷因数)

f=燃料加权因数

f=1.0对燃料气体和储出气体,如果符合西门子的规格

f=1.5对储出气体,如果对比西门子Na+K或者V污染物规格有轻度超标。

w=注入水的加权因数

电「=注入水的质量流虽3L剂伏志)

万"

=燃料质量流型

如果符合西门子规格,流体燃料使用与燃气相同的燃料加权因数,f=1.0。

如果钠和钾总含

量超出规定的限度不大于1.0ppm,或者燃料的污染物钮不超过1.5ppm,燃料加权因数使用f=1.5(符合燃料规格)。

水(例如水/燃料混合乳液)被用来做NOx控制。

在这种情况下热燃气质量流量增加;

压比和输出也增加了。

一方面由燃机叶轮保持的机械负荷也变高。

另一方面,热燃气中的水分增

加会增加热传递系数,从而使燃机叶片金属温度升高。

更重要的是与含水量增加的热燃气接触会削弱燃机叶片表面涂层的抗磨损能力。

涂层在运行

中的保护效果源于其采用抗氧化材料制造,如氧化铝(AI2O3)。

水蒸气降低了这些氧化层

的稳定性。

通过燃烧过程注入水更显著的增加了进口空气的本来的含水量。

这三个方面的影

响,增加的机械负荷,增加的金属温度和氧化层稳定性降低,会加速保护层的磨损。

这些因素同时降低了基础材料的服务寿命。

因此需使用一个加权因数反映水注入量的影响。

燃料加权因数f和水加权因数w的影响由电厂运行小时计数器跟踪体现,并使用这些模型计算

然后加入。

水的和污染液体燃料的加权因数w和f不能直接整合进去,因为它们涉及到不同的化学和机械结构。

鉴于这些被污染的燃料一般是专用重油,我们建议这两个因数的加权应与

西门子燃机工程部门根据电厂具体情况商议。

对每一次测量到和纪录到的燃气温度明显提高,显示主火焰点燃的开机应表示为Start(ni).自

动纪录器(大修计数表)在超过点火速度之上的定义切换速度(约1/3的额定速度)时,则

纪录一次开机。

启机相应的加权因数是ai=10(启机因数)。

运行时间的测量也应基于这一

速度切换点。

对于快速温度变化的当量运行小时数,表示为ti,同样采用与快速负荷变化,或者保护性措

施甩负荷和跳机时相同的方法累计。

反映快速温度变化的当量运行小时数在大修计数表中表

示为动态运行小时数。

快速负荷变化经常发生在小型的,岛状的电网中,当为大电力负荷(例

如电弧炉)供电或某一大电厂停止供电时。

快速负荷变化造成急剧变化的0OTC(校准的出口

温度)温度梯度,导致超出标准的自动控制程序中增加和减少负载时的正常值。

决定性的因数是燃机出口温度的变化,不管其表现如何。

明显的和快速的温度降低或升高增

加了燃气轮机部件的最大压力差值。

在10秒钟内超过18K的燃机出口温度变化称为温度台

阶。

如有过度燃烧”的情况,电网编号的要求规定了对额外运行小时的分别计算。

为阐明大修计数表计算程序如何计算源于快速温度变化ti,的当量运行小时数,图3描述了运

算法则。

相应的小时数变为0OTC的一个函数。

举例:

一次快速透平出口的温度变化从540C变化到230C或从230C变化到540C,△QTg

310C,因此产生的EO的:

1当IGV全开时温度变化,EO眄71h;

2当IGV半开时温度变化,EO眄29h;

3当IGV关闭时温度变化,EO眄8h。

如图4,限定了燃机跳机和甩负荷时的透平出口温度变化梯度值△RTC跳机一一150C;

甩负荷一一IGV全开时200C、IGV关闭时275C。

跳机或甩负荷后,一旦相应的限定值达到,△?

OT。

化会变得缓慢。

发生上述事件(跳机或甩负荷)时,压气机入口0级可调导叶的位置(VLe0)作为参数参与大修

计数表动态运行小时的计算。

更进一步可以从图3和图4中给出的VLe0^定来计算。

跳机和甩负荷引起的温度突变会对某些热部件猛烈的冲击,如果带入全部流量的冷压缩空

气,这种冲击尤为显著。

不管是运行人员,还是制造商都应仔细的分析每次跳机或甩负荷的原因,并采取适当的措施以消除引起跳机或甩负荷的根源。

在跳机或甩负荷时,通过全部或部分的关小IGV开度的办法来减小空气的流量,能使透平的

冷却速度比IGV全开时减缓,于是透平会受到相对较弱的热冲击。

透平出口的温度为?

OTC=540C时:

1当IGV全开时跳机(温度突降)产生的EOH为138h;

2当IGV全开时甩负荷产生的EOH为90h;

3当IGV关闭时跳机产生的EOH为22h。

3.3维护

运行任何设备和电厂都要支付磨损费用。

失去检查和在检修或大修中做必要的磨损修复工

作,燃机不可能可靠运行。

检修以决定机器的状况,并进行必要的纠正工作或修理。

检修的

目的是防止非计划停机及因此产生的损坏、减少发电量。

西门子的维护程序并入燃机的设计。

在燃机的设计中已经制定了燃机的特性及检修范围及检

修工期。

因此,西门子燃机连续性表现在简单、耐用的设计和数十年的寿命。

在相同的范围,它们需要很少的维护物资,有利于维护的设计,具有在整个运行周期平稳过度的特性:

容易从人孔进入机器进行检查;

从人孔进入燃机可接近一级和未级透平叶片,可直接检查路叶片的外观;

容易更换燃烧室壁元件(陶瓷隔热瓦CHS、金属隔热瓦MHS、燃烧器支撑等);

从内侧、夕卜侧都能很容易的接近燃烧器;

通过检查孔可轻易检查到所有部件;

中分的缸面结构更容易接近全部零件;

上下分半的静叶持环能在不吊转子的情况下拆卸;

在不分解转子下可更换压气机和透平叶片;

在不吊转子的情况下可拆卸压气机和透平轴承;

转子采用叠盘拉杆设计,用气膜冷却的轮盘可减小热应力和材料周期疲劳;

单独的透平静叶片(相对扇两个或更多的叶片组成的段形)可减小热应力和材料周期疲劳;

热通道中无阻尼元件;

由于启动扭矩大,在正常的启动温度下能快速加速,意味着可以快速通过固有频率。

根据检修范围和检修间隔区分有三种检修类型:

小修:

只是作简单的检查,进入燃机内部可进入的区域(图5),进行目视检查;

装配工作为

打开人孔,拆除内人孔门。

图5:

环型燃烧室检查

热通道检查(HGPI):

本质上是针对热通道部件的大修。

也就是打开透平外缸,吊出透平静叶

持环的上半部分,滑出透平静叶持环的下半部分,拆下透平动、静叶片,进行修复或更换。

习惯上并一打开压气机部分,也不吊出转子。

实际上,有时也进行扩大性的热通道检查。

大修:

将机器彻底分解,做全面的外观检查和无损检测,根据计划和现场实际情况采取修理措施。

分解转子并不一定作为惯例,但是它对检查来说非常必要。

3.4小修

强烈推荐将压气机清洗作为检修的准备工作。

进行检修时打开进气道人孔、燃烧室人孔、排气扩散段人孔。

按检查表进行检查,主要有以

下部位。

压气机进口,包括进气结构;

燃烧室,包括隔热瓦和燃烧器;

透平一级和末级叶片;

排气缸内衬和排气部分。

通常主要进行如下工作:

外观检查挑选的部件,测量规定的间隔、间隙,检查松动或缺损的零件。

这样可以判断出整个机组的状况。

对比其它厂家生产的燃机,这种检修免去了分解燃烧室和大量耗时的内窥镜检查等工作。

计双缸燃烧室的优势就是在检修期间所有热通道部件(如金属隔热瓦、陶瓷隔热瓦)及其使用的附属件(螺栓、隔热瓦固定件)都可以直接目视检查。

原则上说,直接的目视检查比通过内窥镜检查更加可靠。

内窥镜检查可能在出现意外情况的

时候进行辅助测量时有用,比如外物损伤。

直接进入这可以进入的区域,也能达到这个目的。

本燃机也设计了内窥镜检查孔。

更换哪个部件,应对检查时发现问题的措施都明确在检查表中,补救措施清册是产品手册的

一部分。

通常以规定间隔的进行燃烧室检查并不一定要更换热通道部件(如陶瓷隔热瓦、金属隔热瓦及其固定件)。

如果在检查时发现有必要更换这些零件,在设计上允许不吊缸更换

这些零件。

如前面所述,需检查的部件包括陶瓷隔热瓦,它不象金属隔热瓦那样具有延展性,即使在初

始安装时,也能看到其在设计生产过程中出现的细微裂纹,裂纹延伸只是意味着在燃机运行

过程中释放了较高的热应力。

因此,其检查表规定了以外观检查来判断其表面裂纹。

通过相

应的补救措施清册和评估模板指示并判断出作为一种预防性措施更换哪一块CHS如有缺陷

的隔热瓦不是与假隔热瓦(安装时的最后一块),应先拆除它与那排假隔热瓦间的所有隔热瓦。

根据CHS勺位置,需要拆除金属的假隔热瓦或最后的瓦片。

燃烧室瓦片的裂纹与每台燃机的运行模式有关,每个电厂的隔热瓦期望更换率有所不同。

一旦检查过程中发现了问题隔热瓦的固定件、燃烧器支撑件、金属隔热瓦及附件也应(由西

门子人员)更换。

便于维护的优点意味着这些零件的附件可以很快就更换好。

这些零件期望更换率也是随运行模式变化。

相应更换件的维修包包括运行到大修前需要的零件(安装金属、陶瓷隔热瓦等),包括检修安

装的零件。

这个维修包随检修时的发现表逐一更新。

经过适当的培训,运行人员可根据检查表和补救措施清册逐一完成检修工作。

此时,应通知

制造商发现和补救措施,以便维护商以此信息评估制定下一次检修或大修的计划。

3.5热通道检查和大修

如上所述,在燃机的维护计划中,热通道部件是最重要的。

燃机的热通道部件,特别是透平动叶和静叶,是有限寿命设计。

以叶片的蠕变力为基础设计,叶片容许有一定的蠕变损伤。

图6中描述了在运行时抗蠕变力的储备和修复。

为了防止几排叶片热侵蚀,并充分的利用抗蠕变力储备,必须一定的保护措施。

这种保护系统有一定厚度的涂层,是一层铝化合物。

这种保护涂层的作用是牺牲涂层以保护零件,涂层的寿命要比零件低得多,因此必须按一定的间隔更新。

这些叶片拆下重新涂层后继续回装使

用。

在热通道检查间隔内检修时确定保护涂层的剩余量在允许的厚度范围内。

运行时间

A小修

B大修或热通道时更新

tDEL期望寿命(设计)

C、E基体材料和保护涂层的预期恶化

图6热通道部件的期望寿命和涂层更新

西门子燃机的透平叶片同其它的热通道部件(金属燃烧室内衬)一样,也是采用高强度耐热合

金,并花巨资铸造。

由于不可避免的制造公差,这些部件承受不同的负荷,有不同的强度;

此外,在制造过程中

不连续的结构不能通过试验显示出来;

这样在运行过程中可以发展成缺陷,比如裂纹。

这些

部件在服役期出现不同的强度和负荷形状。

通过在加工过程中贯彻全面的质保措施(如用X射线评估叶片、每一步工序后的表面裂纹检

查),以保证机组运行到热通道检查。

届时,一部分进行必要的检查,同时修理或修复这些零件,保证机组运行到下一次检修。

于存在前面描述的部件个体差异,必须假定一定数量的叶片不能继续服役,因为很小的、最

初不能发现的结构缺陷已经发展。

热通道检查包括小修的范围加上一些热通道部件的修复或更换。

这需要拆除燃烧室和透平区

域的外缸,并吊出燃烧室上半缸和透平静叶持环(包括滑出相应的下半)。

规定不打开压气机

部分,不吊转子。

然而,实际上,也发展成扩大性中修。

增加的范围是打开压气机并按检查表检修可以接近的

部件

以下观点支持扩大性中修:

在扩大性中修时打开压气机缸清洗压气机叶片,并可以除去叶片上的沉积残渣;

这种检修可

以恢复损失的功率和效率。

通过统一编制计划协调工作,避免额外停机时间需求。

由用户决定热通道检查的范围,至少提前一年开预备会,以便做健全的、从容不迫的决定。

此次会议也应以上次检修结果为基础,保证在制定热通道检修范围时考虑到相应的检查发现。

大修的范围包括热通道检查的项目,增加打开压气机部分并对其叶片进行无损检查。

此时视

涂层的状况,重新对压气机叶片进行喷涂;

通常要将压气上半缸拆除。

分解转子以接近检查

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 公共行政管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1