机器人学基础-第7章-机器人轨迹规划-蔡自兴.ppt
《机器人学基础-第7章-机器人轨迹规划-蔡自兴.ppt》由会员分享,可在线阅读,更多相关《机器人学基础-第7章-机器人轨迹规划-蔡自兴.ppt(53页珍藏版)》请在冰豆网上搜索。
中南大学蔡自兴,谢斌zxcai,2010,机器人学基础第七章机器人轨迹规划,1,Ch.7TrajectoryPlanningofRobots,FundamentalsofRobotics,Ch.7TrajectoryPlanningofRobots,2,Ch.7TrajectoryPlanningofRobots,Ch.7TrajectoryPlanningofRobots,3,Ch.7TrajectoryPlanningofRobots,7.1GeneralConsiderationsinTrajectoryPlanning轨迹规划应考虑的问题,BasicProblem:
Movethemanipulatorarmfromsomeinitialpositiontosomedesiredfinalposition(Maybegoingthroughsomeviapoints).,4,7.1Generalconsiderations,7.1GeneralConsiderationsinTrajectoryPlanning,Trajectory:
Timehistoryofposition,velocityandaccelerationforeachDOFPathpoints:
Initial,finalandviapointsConstraints:
Spatial,time,smoothness,5,7.1Generalconsiderations,JointspaceEasytogothroughviapoints(Solveinversekinematicsatallpathpoints)NoproblemswithsingularitiesLesscalculationsCannotfollowstraightlineCartesianspaceWecantrackashape(fororientation:
equivalentaxes,Eulerangles,)Moreexpensiveatruntime(afterthepathiscalculatedneedjointanglesinalotofpoints)Discontinuityproblems,6,GeneralConsiderations-SolutionSpace,7.1Generalconsiderations,Cartesianplanningdifficulties:
7,GeneralConsiderations-SolutionSpace,7.1Generalconsiderations,Initial(A)andGoal(B)Pointsarereachable,butintermediatepoints(C)unreachable.,Ch.7TrajectoryPlanningofRobots,8,Ch.7TrajectoryPlanningofRobots,Joint-SpaceSchemesEachpathpointisconvertedintoasetofdesiredjointanglesbyapplicationoftheinversekinematics.Asmoothfunctionisfoundforeachofthenjointswhichpassthroughtheviapointsandendatthegoalpoint.Timerequiredforeachsegmentisthesameforeachjoint.Thedeterminationofthedesiredjointanglefunctionforaparticularjointisindependentwithotherjoints.,9,7.2InterpolatedCalculationofJointTrajectories关节轨迹的插值计算,7.2JointSpaceSchemes,Choiceofinterpolationfunctionisnotunique!
10,Joint-SpaceSchemes,7.2JointSpaceSchemes,Severalpossiblepathshapesforasinglejoint.,Somepossibleinterpolationfunctions:
CubicpolynomialsCubicpolynomialsforapathwithviapointsHigher-orderpolynomialsLinearfunctionwithparabolicblendsLinearfunctionwithparabolicblendsforapathwithviapoints,11,Joint-SpaceSchemes,7.2JointSpaceSchemes,Inmakingasinglesmoothmotion,atleastfourconstraintsonareevident:
12,7.2.1CubicPolynomials三次多项式插值,7.2JointSpaceSchemes,Combiningthefourconstraintsyieldsfourequationswithfourunknowns:
13,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Thesefourconstraintsuniquelyspecifyaparticularcubic:
14,7.2.1CubicPolynomials,Thejointvelocityandaccelerationalongthispathare:
7.2JointSpaceSchemes,Eg.7.1Asingle-linkrobotwitharotaryjointismotionlessat=15degrees.Itisdesiredtomovethejointinasmoothmannerto=75degreesin3seconds.Findthecoefficientsofacubicwhichaccomplishesthismotionandbringsthemanipulatortorestatthegoal.Plottheposition,velocity,andaccelerationofthejointasafunctionoftime.,15,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Solution:
Plugging0=15,f=75,tf=3into(7.6),wefind,16,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Solution:
17,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Startsat15degreesandendsat75degrees!
Solution:
18,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Startsandendsatrest!
Solution:
19,7.2.1CubicPolynomials,7.2JointSpaceSchemes,Accelerationprofileislinear!
Ifwecometorestateachpointuseformulafrompreviousslideorcontinuousmotion(nostops)needvelocitiesatintermediatepoints:
InitialConditions:
20,7.2.2Cubicpolynomialswithviapoints过路径点的三次多项式插值,7.2JointSpaceSchemes,Solutions:
Howtospecifyvelocityattheviapoints:
TheuserspecifiesthedesiredvelocityateachviapointintermsofaCartesianlinearandangularvelocityofthetoolframeatthatinstant.ThesystemautomaticallychoosesthevelocitiesattheviapointsbyapplyingasuitableheuristicineitherCartesianspaceorjointspace(averageof2sidesetc.).Thesystemautomaticallychoosesthevelocitiesattheviapointsinsuchawayastocausetheaccelerationattheviapointstobecontinuous.,21,7.2JointSpaceSchemes,7.2.2Cubicpolynomialswithviapoints,Higherorderpolynomialsaresometimesusedforpathsegments.Forexample,ifwewishtobeabletospecifytheposition,velocity,andaccelerationatthebeginningandendofapathsegment,aquinticpolynomialisrequired:
22,7.2.3Higher-orderpolynomials高阶多项式插值,7.2JointSpaceSchemes,Wheretheconstraintsaregivenas:
23,7.2.3Higher-orderpolynomials,7.2JointSpaceSchemes,Solutiontotheseequations:
24,7.2.3Higher-orderpolynomials,7.2JointSpaceSchemes,Linearinterpolation(Straightline):
Note:
Althoughthemotionofeachjointinthisschemeislinear,theend-effectoringeneraldoesnotmoveinastraightlineinspace.,25,7.2.4Linearfunctionwithparabolicblends用抛物线过渡的线性插值,7.2JointSpace