苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx

上传人:b****6 文档编号:18940812 上传时间:2023-01-02 格式:DOCX 页数:17 大小:262.82KB
下载 相关 举报
苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx_第1页
第1页 / 共17页
苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx_第2页
第2页 / 共17页
苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx_第3页
第3页 / 共17页
苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx_第4页
第4页 / 共17页
苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx

《苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx(17页珍藏版)》请在冰豆网上搜索。

苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx

1、等腰梯形是轴对称图形,过两底中点的直线是对称轴。

2、等腰梯形在同一底上的两个角相等。

3、等腰梯形对角线相等 

等腰梯形判定:

1.、两腰相等的梯形是等腰梯形 

2、在同一底上两个角相等的梯形是等腰梯形 

第2章勾股定理与平方根

一.勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即

2、勾股定理的逆定理

如果三角形的三边长a,b,c有关系

,那么这个三角形是直角三角形。

3、勾股数:

满足

的三个正整数,称为勾股数。

二、实数的概念及分类

1、实数的分类

正有理数

有理数零有限小数和无限循环小数

实数负有理数

正无理数

无理数无限不循环小数

负无理数

2、无理数:

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如

等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如

+8等;

(3)有特定结构的数,如0.1010010001…等;

(4)某些三角函数值,如sin60o等

三、平方根、算数平方根和立方根

1、算术平方根:

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

表示方法:

记作“

”,读作根号a。

性质:

正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

正数a的平方根记做“

”,读作“正、负根号a”。

一个正数有两个平方根,它们互为相反数;

零的平方根是零;

负数没有平方根。

开平方:

求一个数a的平方根的运算,叫做开平方。

注意

的双重非负性:

3、立方根

一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。

记作

一个正数有一个正的立方根;

一个负数有一个负的立方根;

零的立方根是零。

注意:

,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较

1、实数比较大小:

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法

(1)数轴比较:

在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:

设a、b是实数,

(3)求商比较法:

设a、b是两正实数,

(4)绝对值比较法:

设a、b是两负实数,则

(5)平方法:

五、实数的运算

(1)六种运算:

加、减、乘、除、乘方、开方

(2)实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

第三章中心对称图形

(一)

一、平移

1、定义

在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

2、性质

平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转

在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

三、四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:

四边形的内角和等于360°

四边形的外角和定理:

四边形的外角和等于360°

推论:

多边形的内角和定理:

n边形的内角和等于

180°

多边形的外角和定理:

任意多边形的外角和等于360°

6、设多边形的边数为n,则多边形的对角线共有

条。

从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

四.平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:

(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:

夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:

两组对边分别平行的四边形是平行四边形

(2)定理1:

两组对角分别相等的四边形是平行四边形

(3)定理2:

两组对边分别相等的四边形是平行四边形

(4)定理3:

对角线互相平分的四边形是平行四边形

(5)定理4:

一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积

S平行四边形=底边长×

高=ah

五、矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;

对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);

对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

有一个角是直角的平行四边形是矩形

有三个角是直角的四边形是矩形

对角线相等的平行四边形是矩形

4、矩形的面积

S矩形=长×

宽=ab

六、菱形

1、菱形的定义

有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)菱形的四条边相等,对边平行

(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;

对称中心是对角线的交点(对称中心到菱形四条边的距离相等);

对称轴有两条,是对角线所在的直线。

3、菱形的判定

有一组邻边相等的平行四边形是菱形

四边都相等的四边形是菱形

对角线互相垂直的平行四边形是菱形

4、菱形的面积

S菱形=底边长×

高=两条对角线乘积的一半

七.正方形

1、正方形的定义

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行

(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;

对称中心是对角线的交点;

对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:

先证它是矩形,再证它是菱形。

先证它是菱形,再证它是矩形。

4、正方形的面积

设正方形边长为a,对角线长为b

S正方形=

八、梯形

(一)1、梯形的相关概念

一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。

梯形中不平行的两边叫做梯形的腰。

梯形的两底的距离叫做梯形的高。

2、梯形的判定

一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:

一腰垂直于底的梯形叫做直角梯形。

一般地,梯形的分类如下:

一般梯形

梯形直角梯形

特殊梯形

等腰梯形

(三)等腰梯形

1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定

两腰相等的梯形是等腰梯形

(2)定理:

在同一底上的两个角相等的梯形是等腰梯形

(3)对角线相等的梯形是等腰梯形。

(选择题和填空题可直接用)

(四)梯形的面积

(1)如图,

(2)梯形中有关图形的面积:

八、中心对称图形

在平面内,一个图形绕某个点旋转180°

,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

第四章数量、位置的变化

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;

铅直的数轴叫做y轴或纵轴,取向上为正方向;

x轴和y轴统称坐标轴。

它们的公共原点O称为直角坐标系的原点;

建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当

时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

(2)、坐标轴上的点的特征

点P(x,y)在x轴上

,x为任意实数

点P(x,y)在y轴上

,y为任意实数

点P(x,y)既在x轴上,又在y轴上

x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上

x与y相等

点P(x,y)在第二、四象限夹角平分线上

x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称

横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称

纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称

横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

(3)点P(x,y)到原点的距离等于

三、坐标变化与图形变化的规律:

坐标(x,y)的变化

图形的变化

a或y×

a

被横向或纵向拉长(压缩)为原来的a倍

a,y×

放大(缩小)为原来的a倍

(-1)或y×

(-1)

关于y轴或x轴对称

(-1),y×

关于原点成中心对称

x+a或y+a

沿x轴或y轴平移a个单位

x+a,y+a

沿x轴平移a个单位,再沿y轴平移a个单

第五章一次函数

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:

列表给出自变量与函数的一些对应值

(2)描点:

以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:

按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成

(k,b为常数,k

0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数

中的b=0时(即

)(k为常数,k

0),称y是x的正比例函数。

2、一次函数的图像:

所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数

的图像是经过点(0,b)的直线;

正比例函数

的图像是经过原点(0,0)的直线。

k的符号

b的符号

函数图像

图像特征

k>

b>

y

0x

图像经过一、二、三象限,y随x的增大而增大。

b<

图像经过一、三、四象限,y随x的增大而增大。

K<

图像经过一、二、四象限,y随x的增大而减小

图像经过二、三、四象限,y随x的增大而减小。

注:

当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质

一般地,正比例函数

有下列性质:

(1)当k>

0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k<

0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质

一般地,一次函数

0时,y随x的增大而增大

0时,y随x的增大而减小

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式

(k

0)中的常数k。

确定一个一次函数,需要确定一次函数定义式

0)中的常数k和b。

解这类问题的一般方法是待定系数法。

7、一次函数与一元一次方程的关系:

任何一个一元一次方程都可转化为:

kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.

结论:

由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:

当一次函数值为0时,求相应的自变量的值.

从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.

第六章数据的集中度

1、刻画数据的集中趋势(平均水平)的量:

平均数、众数、中位数

2、平均数

(1)平均数:

一般地,对于n个数

我们把

叫做这n个数的算术平均数,简称平均数,记为

(2)加权平均数:

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1