苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx
《苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《苏教版人教版数学八年级上册知识点总结Word格式文档下载.docx(17页珍藏版)》请在冰豆网上搜索。
1、等腰梯形是轴对称图形,过两底中点的直线是对称轴。
2、等腰梯形在同一底上的两个角相等。
3、等腰梯形对角线相等
等腰梯形判定:
1.、两腰相等的梯形是等腰梯形
2、在同一底上两个角相等的梯形是等腰梯形
第2章勾股定理与平方根
一.勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
2、勾股定理的逆定理
如果三角形的三边长a,b,c有关系
,那么这个三角形是直角三角形。
3、勾股数:
满足
的三个正整数,称为勾股数。
二、实数的概念及分类
1、实数的分类
正有理数
有理数零有限小数和无限循环小数
实数负有理数
正无理数
无理数无限不循环小数
负无理数
2、无理数:
无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如
+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
三、平方根、算数平方根和立方根
1、算术平方根:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:
记作“
”,读作根号a。
性质:
正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
正数a的平方根记做“
”,读作“正、负根号a”。
一个正数有两个平方根,它们互为相反数;
零的平方根是零;
负数没有平方根。
开平方:
求一个数a的平方根的运算,叫做开平方。
注意
的双重非负性:
3、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
记作
一个正数有一个正的立方根;
一个负数有一个负的立方根;
零的立方根是零。
注意:
,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:
正数大于零,负数小于零,正数大于一切负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:
在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:
设a、b是实数,
(3)求商比较法:
设a、b是两正实数,
(4)绝对值比较法:
设a、b是两负实数,则
(5)平方法:
五、实数的运算
(1)六种运算:
加、减、乘、除、乘方、开方
(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章中心对称图形
(一)
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
三、四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:
四边形的内角和等于360°
四边形的外角和定理:
四边形的外角和等于360°
推论:
多边形的内角和定理:
n边形的内角和等于
180°
;
多边形的外角和定理:
任意多边形的外角和等于360°
6、设多边形的边数为n,则多边形的对角线共有
条。
从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
四.平行四边形
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:
(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:
夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:
两组对边分别平行的四边形是平行四边形
(2)定理1:
两组对角分别相等的四边形是平行四边形
(3)定理2:
两组对边分别相等的四边形是平行四边形
(4)定理3:
对角线互相平分的四边形是平行四边形
(5)定理4:
一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×
高=ah
五、矩形
1、矩形的定义
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)矩形的对边平行且相等
(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;
对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);
对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
有一个角是直角的平行四边形是矩形
有三个角是直角的四边形是矩形
对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×
宽=ab
六、菱形
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行
(2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;
对称中心是对角线的交点(对称中心到菱形四条边的距离相等);
对称轴有两条,是对角线所在的直线。
3、菱形的判定
有一组邻边相等的平行四边形是菱形
四边都相等的四边形是菱形
对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×
高=两条对角线乘积的一半
七.正方形
1、正方形的定义
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)正方形四条边都相等,对边平行
(2)正方形的四个角都是直角
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形既是中心对称图形又是轴对称图形;
对称中心是对角线的交点;
对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
八、梯形
(一)1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定
一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:
一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定义
两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定
两腰相等的梯形是等腰梯形
(2)定理:
在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
(选择题和填空题可直接用)
(四)梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
①
②
③
八、中心对称图形
在平面内,一个图形绕某个点旋转180°
,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
第四章数量、位置的变化
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;
铅直的数轴叫做y轴或纵轴,取向上为正方向;
x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;
建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当
时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
(2)、坐标轴上的点的特征
点P(x,y)在x轴上
,x为任意实数
点P(x,y)在y轴上
,y为任意实数
点P(x,y)既在x轴上,又在y轴上
x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上
x与y相等
点P(x,y)在第二、四象限夹角平分线上
x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称
横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称
纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称
横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
三、坐标变化与图形变化的规律:
坐标(x,y)的变化
图形的变化
x×
a或y×
a
被横向或纵向拉长(压缩)为原来的a倍
a,y×
放大(缩小)为原来的a倍
(-1)或y×
(-1)
关于y轴或x轴对称
(-1),y×
关于原点成中心对称
x+a或y+a
沿x轴或y轴平移a个单位
x+a,y+a
沿x轴平移a个单位,再沿y轴平移a个单
第五章一次函数
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:
列表给出自变量与函数的一些对应值
(2)描点:
以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:
按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成
(k,b为常数,k
0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数
中的b=0时(即
)(k为常数,k
0),称y是x的正比例函数。
2、一次函数的图像:
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数
的图像是经过点(0,b)的直线;
正比例函数
的图像是经过原点(0,0)的直线。
k的符号
b的符号
函数图像
图像特征
k>
b>
y
0x
图像经过一、二、三象限,y随x的增大而增大。
b<
图像经过一、三、四象限,y随x的增大而增大。
K<
图像经过一、二、四象限,y随x的增大而减小
图像经过二、三、四象限,y随x的增大而减小。
注:
当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质
一般地,正比例函数
有下列性质:
(1)当k>
0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<
0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数
0时,y随x的增大而增大
0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式
(k
0)中的常数k。
确定一个一次函数,需要确定一次函数定义式
0)中的常数k和b。
解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:
kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.
结论:
由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:
当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
第六章数据的集中度
1、刻画数据的集中趋势(平均水平)的量:
平均数、众数、中位数
2、平均数
(1)平均数:
一般地,对于n个数
我们把
叫做这n个数的算术平均数,简称平均数,记为
(2)加权平均数:
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。