微机原理与接口技术知识点总结整理Word文档下载推荐.docx

上传人:b****5 文档编号:18905421 上传时间:2023-01-02 格式:DOCX 页数:57 大小:456.40KB
下载 相关 举报
微机原理与接口技术知识点总结整理Word文档下载推荐.docx_第1页
第1页 / 共57页
微机原理与接口技术知识点总结整理Word文档下载推荐.docx_第2页
第2页 / 共57页
微机原理与接口技术知识点总结整理Word文档下载推荐.docx_第3页
第3页 / 共57页
微机原理与接口技术知识点总结整理Word文档下载推荐.docx_第4页
第4页 / 共57页
微机原理与接口技术知识点总结整理Word文档下载推荐.docx_第5页
第5页 / 共57页
点击查看更多>>
下载资源
资源描述

微机原理与接口技术知识点总结整理Word文档下载推荐.docx

《微机原理与接口技术知识点总结整理Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《微机原理与接口技术知识点总结整理Word文档下载推荐.docx(57页珍藏版)》请在冰豆网上搜索。

微机原理与接口技术知识点总结整理Word文档下载推荐.docx

若X<

0,则[X]反=对应原码的符号位不变,数值部分按位求反

数0的反码也不唯一

(3)补码

0,则[X]补=[X]反=[X]原

0,则[X]补=[X]反+1

机器字长为8时,数0的补码唯一,同为00000000

2、8位二进制的表示范围:

原码:

-127~+127

反码:

补码:

-128~+127

3、特殊数10000000

●该数在原码中定义为:

-0

●在反码中定义为:

-127

●在补码中定义为:

-128

●对无符号数:

(10000000)2=128

三、信息的编码

1、十进制数的二进制数编码

用4位二进制数表示一位十进制数。

有两种表示法:

压缩BCD码和非压缩BCD码。

(1)压缩BCD码的每一位用4位二进制表示,0000~1001表示0~9,一个字节表示两位十进制数。

(2)非压缩BCD码用一个字节表示一位十进制数,高4位总是0000,低4位的0000~1001表示0~9

2、字符的编码

计算机采用7位二进制代码对字符进行编码

(1)

数字0~9的编码是0110000~0111001,它们的高3位均是011,后4位正好与其对应的二进制代码(BCD码)相符。

(2)英文字母A~Z的ASCII码从1000001(41H)开始顺序递增,字母a~z的ASCII码从1100001(61H)开始顺序递增,这样的排列对信息检索十分有利。

 

第二章微机组成原理

第一节、微机的结构

1、计算机的经典结构——冯.诺依曼结构

(1)计算机由运算器、控制器、输入设备和输出设备五大部分组成(运算器和控制器又称为CPU)

(2)数据和程序以二进制代码形式不加区分地存放在存储器总,存放位置由地址指定,数制为二进制。

(3)控制器是根据存放在存储器中的指令序列来操作的,并由一个程序计数器控制指令的执行。

3、系统总线的分类

(1)数据总线(DataBus),它决定了处理器的字长。

(2)地址总线(AddressBus),它决定系统所能直接访问的存储器空间的容量。

(3)控制总线(ControlBus)

第二节、8086微处理器

1、8086是一种单片微处理芯片,其内部数据总线的宽度是16位,外部数据总线宽度也是16位,片内包含有控制计算机所有功能的各种电路。

8086地址总线的宽度为20位,有1MB(220)寻址空间。

2、8086CPU由总线接口部件BIU和执行部件EU组成。

BIU和EU的操作是异步的,为

8086取指令和执行指令的并行操作体统硬件支持。

3、8086处理器的启动

4、寄存器结构

8086微处理器包含有13个16位的寄存器和9位标志位。

4个通用寄存器(AX,BX,CX,DX)

4个段寄存器(CS,DS,SS,ES)

4个指针和变址寄存器(SP,BP,SI,DI)

指令指针(IP)

1)、通用寄存器

(1)8086含4个16位数据寄存器,它们又可分为8个8位寄存器,即:

●AX→AH,AL

●BX→BH,BL

●CX→CH,CL

●DX→DH,DL

常用来存放参与运算的操作数或运算结果

(2)数据寄存器特有的习惯用法

●AX:

累加器。

多用于存放中间运算结果。

所有I/O指令必须都通过AX与接口传送信息;

●BX:

基址寄存器。

在间接寻址中用于存放基地址;

●CX:

计数寄存器。

用于在循环或串操作指令中存放循环次数或重复次数;

●DX:

数据寄存器。

在32位乘除法运算时,存放高16位数;

在间接寻址的I/O指令中存放I/O端口地址。

2)、指针和变址寄存器

●SP:

堆栈指针寄存器,其内容为栈顶的偏移地址;

●BP:

基址指针寄存器,常用于在访问内存时存放内存单元的偏移地址。

●SI:

源变址寄存器

●DI:

目标变址寄存器

变址寄存器常用于指令的间接寻址或变址寻址。

3)、段寄存器

CS:

代码段寄存器,代码段用于存放指令代码

DS:

数据段寄存器

ES:

附加段寄存器,数据段和附加段用来存放操作数

SS:

堆栈段寄存器,堆栈段用于存放返回地址,保存寄存器内容,传递参数

4)、指令指针(IP)

16位指令指针寄存器,其内容为下一条要执行的指令的偏移地址。

5)、标志寄存器

(1)状态标志:

●进位标志位(CF):

运算结果的最高位有进位或有借位,则CF=1

●辅助进位标志位(AF):

运算结果的低四位有进位或借位,则AF=1

●溢出标志位(OF):

运算结果有溢出,则OF=1

●零标志位(ZF):

反映指令的执行是否产生一个为零的结果

●符号标志位(SF):

指出该指令的执行是否产生一个负的结果

●奇偶标志位(PF):

表示指令运算结果的低8位“1”个数是否为偶数

(2)控制标志位

●中断允许标志位(IF):

表示CPU是否能够响应外部可屏蔽中断请求

●跟踪标志(TF):

CPU单步执行

5、8086的引脚及其功能(重点掌握以下引脚)

●AD15~AD0:

双向三态的地址总线,输入/输出信号

●INTR:

可屏蔽中断请求输入信号,高电平有效。

可通过设置IF的值来控制。

●NMI:

非屏蔽中断输入信号。

不能用软件进行屏蔽。

●RESET:

复位输入信号,高电平有效。

复位的初始状态见P21

●MN/MX:

最小最大模式输入控制信号。

第三章8086指令系统

第一节8086寻址方式

一、数据寻址方式

1、立即寻址

操作数(为一常数)直接由指令给出

(此操作数称为立即数)

立即寻址只能用于源操作数

例:

MOVAX,1C8FH

MOVBYTEPTR[2A00H],8FH

错误例:

×

MOV2A00H,AX;

错误!

指令操作例:

MOVAX,3102H;

AX→3102H

执行后,(AH)=31H,(AL)=02H

2、寄存器寻址

(1)操作数放在某个寄存器中

(2)源操作数与目的操作数字长要相同

(3)寄存器寻址与段地址无关

MOVAX,BX

MOV[3F00H],AX

MOVCL,AL

错误例:

×

MOVAX,BL;

字长不同

MOVES:

AX,DX;

寄存器与段无关

3、直接寻址

(1)指令中直接给出操作数的16位偏移地址

偏移地址也称为有效地址(EA,EffectiveAddress)

(2)默认的段寄存器为DS,但也可以显式地指定其他段寄存器——称为段超越前缀

(3)偏移地址也可用符号地址来表示,如ADDR、VAR

MOVAX,[2A00H]

MOVDX,ES:

[2A00H]

MOVSI,TABLE_PTR

4、间接寻址

●操作数的偏移地址(有效地址EA)放在寄存器中

●只有SI、DI、BX和BP可作间址寄存器

●例:

MOVAX,[BX]

MOVCL,CS:

[DI]

错误例:

MOVAX,[DX]

MOVCL,[AX]

5、寄存器相对寻址

●EA=间址寄存器的内容加上一个8/16位的位移量

MOVAX,[BX+8]

MOVCX,TABLE[SI]

MOVAX,[BP];

默认段寄存器为SS

●指令操作例:

MOVAX,DATA[BX]

若(DS)=6000H,(BX)=1000H,DATA=2A00H,

(63A00H)=66H,(63A01H)=55H

则物理地址=60000H+1000H+2A00H=63A00H

指令执行后:

(AX)=5566H

6、基址变址寻址

●若操作数的偏移地址:

由基址寄存器(BX或BP)给出——基址寻址方式

由变址寄存器(SI或DI)给出——变址寻址方式

由一个基址寄存器的内容和一个变址寄存器的内容相加而形成操作数的偏移地址,称为基址-变址寻址。

EA=(BX)+(SI)或(DI);

EA=(BP)+(SI)或(DI)

同一组内的寄存器不能同时出现。

除了有段跨越前缀的情况外,当基址寄存器为BX时,操作数应该存放在数据段DS中,当基址寄存器为BP时,操作数应放在堆栈段SS中。

MOVAX,[BX][SI]

MOVAX,[BX+SI]

MOVAX,DS:

[BP][DI]

MOVAX,[BX][BP]

MOVAX,[DI][SI]

MOVAX,[BX][SI]

假定:

(DS)=8000H,(BX)=2000H,SI=1000H

则物理地址=80000H+2000H+1000H=83000H

指令执行后:

(AL)=[83000H]

(AH)=[83001H]

7、相对基址变址寻址

●在基址-变址寻址的基础上再加上一个相对位移量

EA=(BX)+(SI)或(DI)+8位或16位位移量;

EA=(BP)+(SI)或(DI)+8位或16位位移量

MOVAX,DATA[DI][BX]

若(DS)=8000H,(BX)=2000H,(DI)=1000H,DATA=200H

则指令执行后(AH)=[83021H],(AL)=[83020H]

寄存器间接、寄存器相对、基址变址、相对基址变址四种寻址方式的比较:

寻址方式指令操作数形式

⏹寄存器间接只有一个寄存器(BX/BP/SI/DI之一)

⏹寄存器相对一个寄存器加上位移量

⏹基址—变址两个不同类别的寄存器

⏹相对基址-变址两个不同类别的寄存器加上位移量

二、地址寻址方式(了解有4类,能判断)

简要判断依据(指令中间的单词):

段内直接short,near

段内间接word

段间直接far

段间间接dword

第二节8086指令系统

一、数据传送指令

1、通用传送指令

(1)MOVdest,src;

dest←src

传送的是字节还是字取决于指令中涉及的寄存器是8位还是16位。

具体来说可实现:

1MOVmem/reg1,mem/reg2

指令中两操作数中至少有一个为寄存器

②MOVreg,data;

立即数送寄存器

③MOVmem,data;

立即数送存储单元

④MOVacc,mem;

存储单元送累加器

⑤MOVmem,acc;

累加器送存储单元

⑥MOVsegreg,mem/reg;

存储单元/寄存器送段寄存器

⑦MOVmem/reg,segreg;

段寄存器送存储单元/寄存器

MOV指令的使用规则

①IP不能作目的寄存器

②不允许mem←mem

③不允许segreg←segreg

④立即数不允许作为目的操作数

⑤不允许segreg←立即数

⑥源操作数与目的操作数类型要一致

⑦当源操作数为单字节的立即数,而目的操作数为间址、变址、基址+变址的内存数时,必须用PTR说明数据类型。

如:

MOV[BX],12H是错误的。

(2)、堆栈指令

什么是堆栈?

按“后进先出(LIFO)”方式工作的存储区域。

堆栈以字为单位进行压入弹出操作。

规定由SS指示堆栈段的段基址,堆栈指针SP始终指向堆栈的顶部,SP的初值规定了所用堆栈区的大小。

堆栈的最高地址叫栈底。

1压栈指令PUSH

PUSHsrc;

src为16位操作数

PUSHAX;

将AX内容压栈

执行操作:

(SP)-1←高字节AH

(SP)-2←低字节AL

(SP)←(SP)-2

注意进栈方向是高地址向低地址发展。

`

2弹出指令POP

POPdest

POPBX;

将栈顶内容弹至BX

(BL)←(SP)

(BH)←(SP)+1

(SP)←(SP)+2

堆栈指令在使用时需注意的几点:

1堆栈操作总是按字进行

2不能从栈顶弹出一个字给CS

3堆栈指针为SS:

SP,SP永远指向栈顶

④SP自动进行增减量(-2,+2)

(3)、交换指令XCHG

格式:

XCHGreg,mem/reg

功能:

交换两操作数的内容。

要求:

两操作数中必须有一个在寄存器中;

操作数不能为段寄存器和立即数;

源和目地操作数类型要一致。

举例:

XCHGAX,BX

XCHG[2000],CL

(4)查表指令XLAT

执行的操作:

AL←[(BX)+(AL)]

又叫查表转换指令,它可根据表项序号查出表中对应代码的内容。

执行时先将表的首地址(偏移地址)送到BX中,表项序号存于AL中。

2、输入输出指令

只限于用累加器AL或AX来传送信息。

功能:

(累加器)←→I/O端口

(1)输入指令IN

格式:

INacc,PORT;

PORT端口号0~255H

INacc,DX;

DX表示的端口范围达64K

例:

INAL,80H;

(AL)←(80H端口)

INAL,DX;

(AL)←((DX))

(2)输出指令OUT

OUTport,acc

OUTDX,acc

OUT68H,AX;

(69H,68H)←(AX)

OUTDX,AL;

((DX))←(AL)

在使用间接寻址的IN/OUT指令时,要事先用传送指令把I/O端口号设置到DX寄存器

MOVDX,220H

INAL,DX;

将220H端口内容读入AL

3、目标地址传送指令

(1)LEA

传送偏移地址

LEAreg,mem;

将指定内存单元的偏移地址送到指定寄存器

1)源操作数必须是一个存储器操作数;

2)目的操作数必须是一个16位的通用寄存器。

LEABX,[SI+10H]

设:

(SI)=1000H

则执行该指令后,(BX)=1010H

●注意以下二条指令差别:

LEABX,BUFFER

MOVBX,BUFFER

前者表示将符号地址为BUFFER的存储单元的偏移地址取到BX中;

后者表示将BUFFER存储单元中的内容取到BX中。

下面两条指令等效:

LEABX,BUFFER

MOVBX,OFFSETBUFFER

其中OFFSETBUFFER表示存储器单元BUFFER的偏移地址。

二者都可用于取存储器单元的偏移地址,但LEA指令可以取动态的地址,OFFSET只能取静态的地址。

二、算术运算指令

1、加法指令

(1)不带进位的加法指令ADD

ADDacc,data

ADDmem/reg,data

ADDmem/reg1,mem/reg2

实例:

ADDAL,30H

ADDSI,[BX+20H]

ADDCX,SI

ADD[DI],200H

•ADD指令对6个状态标志均产生影响。

已知(BX)=D75FH

指令ADDBX,8046H执行后,状态标志各是多少?

D75FH=1110011101011111

8046H=1000000001000110

111111

0110011110100101

结果:

C=1,Z=0,P=0,A=1,O=1,S=0

判断溢出与进位

从硬件的角度:

默认参与运算的操作数都是有符号数,当两数的符号位相同,而和的结果相异时有溢出,则OF=1,否则OF=0

(2)带进位的加法ADC

ADC指令在形式上和功能上与ADD类似,只是相加时还要包括进位标志CF的内容,例如:

ADCAL,68H;

AL←(AL)+68H+(CF)

ADCAX,CX;

AX←(AX)+(CX)+(CF)

ADCBX,[DI];

BX←(BX)+[DI+1][DI]+(CF)

(3)加1指令INC

INCreg/mem

类似于C语言中的++操作:

对指定的操作数加1

INCAL

INCSI

INCBYTEPTR[BX+4]

注:

本指令不影响CF标志。

(4)非压缩BCD码加法调整指令AAA

AAA指令的操作:

如果AL的低4位>9或AF=1,则:

①AL←(AL)+6,(AH)←(AH)+1,AF←1

②AL高4位清零

③CF←AF

否则AL高4位清零

(5)压缩BCD码加法调整指令DAA

●两个压缩BCD码相加结果在AL中,通过DAA调整得到一个正确的压缩BCD码.

●指令操作(调整方法):

若AL的低4位>9或AF=1

则(AL)←(AL)+6,AF←1

若AL的高4位>9或CF=1

则(AL)←(AL)+60H,CF←1

●除OF外,DAA指令影响所有其它标志。

●DAA指令应紧跟在ADD或ADC指令之后。

2、减法指令

(1)不考虑借位的减法指令SUB

SUBdest,src

操作:

dest←(dest)-(src)

1.源和目的操作数不能同时为存储器操作数

2.立即数不能作为目的操作数

指令例子:

SUBAL,60H

SUB[BX+20H],DX

SUBAX,CX

(2)考虑借位的减法指令SBB

SBB指令主要用于多字节的减法。

SBBdest,src

dest←(dest)-(src)-(CF)

SBBAX,CX

SBBWORDPTR[SI],2080H

SBB[SI],DX

(3)减1指令DEC

作用类似于C语言中的”--”操作符。

DECopr

opr←(opr)-1

DECCL

DECBYTEPTR[DI+2]

DECSI

(4)求补指令NEG

NEGopr

opr←0-(opr)

对一个操作数取补码相当于用0减去此操作数,故利用NEG指令可得到负数的绝对值。

若(AL)=0FCH,则执行NEGAL后,

(AL)=04H,CF=1

(5)比较指令CMP

CMPdest,src

(dest)-(src)

CMP也是执行两个操作数相减,但结果不送目标操作数,其结果只反映在标志位上。

CMPAL,0AH

CMPCX,SI

CMPDI,[BX+03]

(6)非压缩BCD码减法调整指令AAS

对AL中由两个非压缩的BCD码相减的结果进行调整。

调整操作为:

若AL的低4位>9或AF=1,则:

①AL←(AL)-6,AH←(AH)-1,AF←1

②AL的高4位清零

否则:

AL的高4位清零

(7)压缩BCD码减法调整指令DAS

对AL中由两个压缩BCD码相减的结果进行调整。

AL←(AL)-6,且AF←1

若AL的高4位>9或CF=1,则:

AL←(AL)-60H,且CF←1

DAS对OF无定义,但影响其余标志位。

DAS指令要求跟在减法指令之后。

3、乘法指令

进行乘法时:

8位*8位→16位乘积

16位*16位→32位乘积

(1)无符号数的乘法指令MUL(MEM/REG)

MULsrc

字节操作数(AX)←(AL)×

(src)

字操作数(DX,AX)←(AX)×

MULBL;

(AL)×

(BL),乘积在AX中

MULCX;

(AX)×

(CX),乘积在DX,AX中

MULBYTEPTR[BX]

(2)有符号数乘法指令IMUL

格式与MUL指令类似,只是要求两操作数均为有符号数。

IMULBL;

(AX)←(AL)×

(BL)

IMULWORDPTR[SI];

(DX,AX)←(AX)×

([SI+1][SI])

MUL/IMUL指令中

●AL(AX)为隐含的乘数寄存器;

●AX(DX,AX)为隐含的乘积寄存器;

●SRC不能为立即数;

●除CF和OF外,对其它标志位无定义。

4、除法指令

进行除法时:

16位/8位→8位商

32位/16位→16位商

对被除数、商及余数存放有如下规定:

被除数商余数

字节除法AXALAH

字除法DX:

AXAXDX

(1)无符号数除法指令DIV

DIVsrc

字节操作(AL)←(AX)/(SRC)的商

(AH)←(AX)/(SRC)的余数

字操作(AX)←(DX,AX)/(SRC)的商

(DX)←(DX,AX)/(SRC)的余数

DIVCL

DIVWORDPTR[BX]

(2)有符号数除法指令IDIV

IDIVsrc

操作与DIV类似。

商及余数均为有符号数,且余数符号总是与被除数符号相同。

注意:

对于DIV/IDIV指令

AX(DX,AX)为隐含的被除数寄存器。

AL(AX)为隐含的商寄存器。

AH(DX)为隐含的余数寄存器。

src不能为立即数。

对所有条件标志位均无定

关于除法操作中的字长扩展问题

•除法运算要求被除数字长是除数字长的两倍,若不满足则需对被除数进行扩展,否则产生错误。

•对于无符号数除法扩展,只需将AH或DX清零即可。

•对有符号数而言,则是符号位的扩展。

可使用前面介绍过的符号扩展指令CBW和CWD

三、逻辑运算和移位指令

1、逻辑运算指令

(1)逻辑与AND

对两个操作数进行按位逻辑“与”操作。

ANDdest,src

用途:

保留操作数的某几位,清零其他位。

例1:

保留AL中

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 国外设计风格

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1