matlab课后习题答案Word文档下载推荐.docx

上传人:b****6 文档编号:18670931 上传时间:2022-12-31 格式:DOCX 页数:88 大小:826.35KB
下载 相关 举报
matlab课后习题答案Word文档下载推荐.docx_第1页
第1页 / 共88页
matlab课后习题答案Word文档下载推荐.docx_第2页
第2页 / 共88页
matlab课后习题答案Word文档下载推荐.docx_第3页
第3页 / 共88页
matlab课后习题答案Word文档下载推荐.docx_第4页
第4页 / 共88页
matlab课后习题答案Word文档下载推荐.docx_第5页
第5页 / 共88页
点击查看更多>>
下载资源
资源描述

matlab课后习题答案Word文档下载推荐.docx

《matlab课后习题答案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《matlab课后习题答案Word文档下载推荐.docx(88页珍藏版)》请在冰豆网上搜索。

matlab课后习题答案Word文档下载推荐.docx

a=[123;

456;

789];

a.^2

149

162536

496481

a^2

303642

668196

102126150

2.11

,观察a与b之间的六种关系运算的结果。

456];

b=[8–74;

362];

a>

b

010

101

=b

a<

a==b

000

a~=b

111

2.12

,在进行逻辑运算时,a相当于什么样的逻辑量。

相当于a=[11011]。

2.13在sin(x)运算中,x是角度还是弧度?

在sin(x)运算中,x是弧度,MATLAB规定所有的三角函数运算都是按弧度进行运算。

2.14角度

,求x的正弦、余弦、正切和余切。

x=[304560];

x1=x/180*pi;

sin(x1)

0.50000.70710.8660

cos(x1)

0.86600.70710.5000

tan(x1)

0.57741.00001.7321

cot(x1)

1.73211.00000.5774

2.15用四舍五入的方法将数组[2.45686.39823.93758.5042]取整。

b=[2.45686.39823.93758.5042];

round(b)

2649

2.16矩阵

,分别对a进行特征值分解、奇异值分解、LU分解、QR分解及Chollesky分解。

[v,d]=eig(a,b)

v=

-0.4330-0.2543-0.1744

-0.56570.9660-0.6091

-0.70180.04720.7736

d=

13.548200

04.83030

003.6216

a=[912;

563;

827];

[u,s,v]=svd(a)

u=

-0.56010.5320-0.6350

-0.4762-0.8340-0.2788

-0.67790.14620.7204

s=

15.523400

04.56480

003.3446

-0.82750.3917-0.4023

-0.3075-0.9156-0.2592

-0.4699-0.09070.8781

[l,u]=lu(a)

l=

1.000000

0.55561.00000

0.88890.20411.0000

9.00001.00002.0000

05.44441.8889

004.8367

[q,r]=qr(a)

q=

-0.69030.3969-0.6050

-0.3835-0.9097-0.1592

-0.61360.12210.7801

r=

-13.0384-4.2183-6.8260

0-4.8172-1.0807

003.7733

c=chol(a)

c=

3.00000.33330.6667

02.42671.1447

002.2903

2.17将矩阵

组合成两个新矩阵:

(1)组合成一个43的矩阵,第一列为按列顺序排列的a矩阵元素,第二列为按列顺序排列的b矩阵元素,第三列为按列顺序排列的c矩阵元素,即

(2)按照a、b、c的列顺序组合成一个行矢量,即

>

a=[42;

57];

>

b=[71;

83];

c=[59;

62];

%

(1)

d=[a(:

)b(:

)c(:

)]

d=

475

586

219

732

%

(2)

e=[a(:

);

b(:

c(:

)]'

e=

452778135692

或利用

(1)中产生的d

e=reshape(d,1,12)

ans=

第3章数值计算基础

3.1将(x-6)(x-3)(x-8)展开为系数多项式的形式。

a=[638];

pa=poly(a);

ppa=poly2sym(pa)

ppa=

x^3-17*x^2+90*x-144

3.2求解多项式x3-7x2+2x+40的根。

r=[1-7240];

p=roots(r);

-0.2151

0.4459

0.7949

0.2707

3.3求解在x=8时多项式(x-1)(x-2)(x-3)(x-4)的值。

p=poly([1234]);

polyvalm(p,8)

840

3.4计算多项式乘法(x2+2x+2)(x2+5x+4)。

c=conv([122],[154])

c=

1716188

3.5计算多项式除法(3x3+13x2+6x+8)/(x+4)。

d=deconv([31368],[14])

312

3.6对下式进行部分分式展开:

a=[134272];

b=[32546];

[r,s,k]=residue(b,a)

r=

1.1274+1.1513i

1.1274-1.1513i

-0.0232-0.0722i

-0.0232+0.0722i

0.7916

s=

-1.7680+1.2673i

-1.7680-1.2673i

0.4176+1.1130i

0.4176-1.1130i

-0.2991

k=

[]

3.7计算多项式

的微分和积分。

p=[4–12–145];

pder=polyder(p);

pders=poly2sym(pder)

pint=polyint(p);

pints=poly2sym(pint)

pders=

12*x^2-24*x-14

pints=

x^4-4*x^3-7*x^2+5*x

3.8解方程组

a=[290;

3411;

226];

b=[1366]'

;

x=a\b

x=

7.4000

-0.2000

-1.4000

3.9求欠定方程组

的最小数解。

a=[2474;

9356];

b=[85]'

x=pinv(a)*b

-0.2151

0.4459

0.7949

0.2707

3.10有一组测量数据如下表所示,数据具有y=x2的变化趋势,用最小二乘法求解y。

x

1

1.5

2

2.5

3

3.5

4

4.5

5

y

-1.4

2.7

5.9

8.4

12.2

16.6

18.8

26.2

x=[11.522.533.544.55]'

y=[-1.42.735.98.412.216.618.826.2]'

e=[ones(size(x))x.^2]

c=e\y

x1=[1:

0.1:

5]'

y1=[ones(size(x1)),x1.^2]*c;

plot(x,y,'

ro'

x1,y1,'

k'

3.11矩阵

,计算a的行列式和逆矩阵。

a=[42-6;

754;

349];

>

ad=det(a)

ai=inv(a)

ad=

-64

ai=

-0.45310.6562-0.5937

0.7969-0.84370.9062

-0.20310.1562-0.0937

3.12y=sin(x),x从0到2,x=0.02,求y的最大值、最小值、均值和标准差。

x=0:

0.02*pi:

2*pi;

y=sin(x);

ymax=max(y)

ymin=min(y)

ymean=mean(y)

ystd=std(y)

ymax=

1

ymin=

-1

ymean=

2.2995e-017

ystd=

0.7071

3.13

,计算x的协方差、y的协方差、x与y的互协方差。

x=[12345];

y=[246810];

cx=cov(x)

cy=cov(y)

cxy=cov(x,y)

cx=

2.5000

cy=

10

cxy=

2.50005.0000

5.000010.0000

3.14参照例3-20的方法,计算表达式

的梯度并绘图。

v=-2:

0.2:

2;

[x,y]=meshgrid(v);

z=10*(x.^3-y.^5).*exp(-x.^2-y.^2);

[px,py]=gradient(z,.2,.2);

contour(x,y,z)

holdon

quiver(x,y,px,py)

holdoff

3.15有一正弦衰减数据y=sin(x).*exp(-x/10),其中x=0:

pi/5:

4*pi,用三次样条法进行插值。

x0=0:

4*pi;

y0=sin(x0).*exp(-x0/10);

pi/20:

y=spline(x0,y0,x);

plot(x0,y0,'

or'

x,y,'

b'

第4章符号数学基础

4.1创建符号变量有几种方法?

MATLAB提供了两种创建符号变量和表达式的函数:

sym和syms。

sym用于创建一个符号变量或表达式,用法如x=sym(‘x’)及f=sym(‘x+y+z’),syms用于创建多个符号变量,用法如symsxyz。

f=sym(‘x+y+z’)

相当于

symsxyz

f=x+y+z

4.2下面三种表示方法有什么不同的含义?

(1)f=3*x^2+5*x+2

(2)f='

3*x^2+5*x+2'

(3)x=sym('

x'

f=3*x^2+5*x+2

表示在给定x时,将3*x^2+5*x+2的数值运算结果赋值给变量f,如果没有给定x则指示错误信息。

表示将字符串'

赋值给字符变量f,没有任何计算含义,因此也不对字符串中的容做任何分析。

表示x是一个符号变量,因此算式f=3*x^2+5*x+2就具有了符号函数的意义,f也自然成为符号变量了。

4.3用符号函数法求解方程at2+b*t+c=0。

r=solve('

a*t^2+b*t+c=0'

'

t'

r=

[1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

4.4用符号计算验证三角等式:

sin

(1)cos

(2)-cos

(1)sin

(2)=sin(1-2)

symsphi1phi2;

y=simple(sin(phi1)*cos(phi2)-cos(phi1)*sin(phi2))

y=

sin(phi1-phi2)

4.5求矩阵

的行列式值、逆和特征根。

symsa11a12a21a22;

A=[a11,a12;

a21,a22]

AD=det(A)%行列式

AI=inv(A)%逆

AE=eig(A)%特征值

A=

[a11,a12]

[a21,a22]

AD=

a11*a22-a12*a21

AI=

[-a22/(-a11*a22+a12*a21),a12/(-a11*a22+a12*a21)]

[a21/(-a11*a22+a12*a21),-a11/(-a11*a22+a12*a21)]

AE=

[1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)]

[1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)]

4.6因式分解:

symsx;

f=x^4-5*x^3+5*x^2+5*x-6;

factor(f)

(x-1)*(x-2)*(x-3)*(x+1)

4.7

,用符号微分求df/dx。

symsax;

f=[a,x^2,1/x;

exp(a*x),log(x),sin(x)];

df=diff(f)

df=

[0,2*x,-1/x^2]

[a*exp(a*x),1/x,cos(x)]

4.8求代数方程组

关于x,y的解。

S=solve('

a*x^2+b*y+c=0'

b*x+c=0'

y'

disp('

S.x='

),disp(S.x)

S.y='

),disp(S.y)

S.x=

-c/b

S.y=

-c*(a*c+b^2)/b^3

4.9符号函数绘图法绘制函数x=sin(3t)cos(t),y=sin(3t)sin(t)的图形,t的变化围为[0,2]。

symst

ezplot(sin(3*t)*cos(t),sin(3*t)*sin(t),[0,pi])

4.10绘制极坐标下sin(3*t)*cos(t)的图形。

ezpolar(sin(3*t)*cos(t)

第5章基本图形处理功能

5.1绘制曲线

,x的取值围为[-5,5]。

x=-5:

5;

y=x.^3+x+1;

plot(x,y)

5.2有一组测量数据满足

,t的变化围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线。

t=0:

0.5:

10;

y1=exp(-0.1*t);

y2=exp(-0.2*t);

y3=exp(-0.5*t);

plot(t,y1,'

-ob'

t,y2,'

:

*r'

t,y3,'

-.^g'

5.3在5.1题结果图中添加标题

,并用箭头线标识出各曲线a的取值。

title('

\ity\rm=e^{-\itat}'

FontSize'

12)

text(t(6),y1(6),'

\leftarrow\ita\rm=0.1'

11)

text(t(6),y2(6),'

\leftarrow\ita\rm=0.2'

text(t(6),y3(6),'

\leftarrow\ita\rm=0.5'

5.4在5.1题结果图中添加标题

和图例框。

legend('

a=0.1'

a=0.2'

a=0.5'

5.5表中列出了4个观测点的6次测量数据,将数据绘制成为分组形式和堆叠形式的条形图。

第1次

第2次

第3次

第4次

第5次

第6次

观测点1

6

7

8

观测点2

观测点3

9

观测点4

y=[3696;

6774;

7323;

4252;

2487;

8744];

bar(y)

bar(y,’stack’)

5.6x=[6649715638],绘制饼图,并将第五个切块分离出来。

x=[6649715638];

L=[00001];

pie(x,L)

5.7

,当x和y的取值围均为-2到2时,用建立子窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和带渲染效果的表面图。

[x,y]=meshgrid([-2:

.2:

2]);

z=x.*exp(-x.^2-y.^2);

mesh(x,y,z)

subplot(2,2,1),plot3(x,y,z)

plot3(x,y,z)'

subplot(2,2,2),mesh(x,y,z)

mesh(x,y,z)'

subplot(2,2,3),surf(x,y,z)

surf(x,y,z)'

subplot(2,2,4),surf(x,y,z),shadinginterp

surf(x,y,z),shadinginterp'

5.8绘制peaks函数的表面图,用colormap函数改变预置的色图,观察色彩的分布情况。

surf(peaks(30));

colormap(hot)

colormap(cool)

colormap(lines)

5.9用sphere函数产生球表面坐标,绘制不通明网线图、透明网线图、表面图和带剪孔的表面图。

[x,y,z]=sphere(30);

mesh(x,y,z)

mesh(x,y,z),hiddenoff

surf(x,y,z)

z(18:

30,1:

5)=NaN*ones(13,5);

5.10将5.9题中的带剪孔的球形表面图的坐标改变为正方形,以使球面看起来是圆的而不是椭圆的,然后关闭坐标轴的显示。

axissquare

axisoff

第6章高级图形处理功能

6.1轴对象是使用的最多的图形对象之一,那么轴对象是哪个对象的子对象,又是那些对象的父对象?

轴对象是图形窗口对象的子对象,是图像、灯光、线、块、矩形、表面、字的父对象。

6.2什么是图形句柄?

图形句柄有什么用途?

图形句柄是每个图形对象从产生时起就被赋予的一个唯一的标识。

利用图形句柄既可以操纵一个已经存在的图形对象的属性,也可以在建立图形对象时指定属性的值,特别是对指定对象句柄的操作不会影响同时存在的其他对象,这是非常有用的。

6.3如何设置和获取指定句柄对象的属性值?

一图形窗口对象的句柄为h,先查询该窗口对象可以设置的各种属性,再将窗口的灰色背景设置为白色背景。

(1)利用set(句柄,‘属性名称’,属性值)语句可以设置指定对象的属性,get(句柄,‘属性名称’)语句可以获得指定对象的属性。

(2)>

set(h)

Alphamap

BackingStore:

[{on}|off]

CloseRequestFcn:

string-or-functionhandle-or-cellarray

Color

Colormap

CurrentAxes

CurrentCharacter

CurrentObject

……

从列出的属性容可以看到,设置背景颜色的属性名为Color,因此

set(h,’color’,’w’)

即可将图形窗口的背景色改为白色。

6.4已知三维图形视角的缺省值是方位角为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1