人教版七年级数学下册教案Word文件下载.docx
《人教版七年级数学下册教案Word文件下载.docx》由会员分享,可在线阅读,更多相关《人教版七年级数学下册教案Word文件下载.docx(80页珍藏版)》请在冰豆网上搜索。
【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
注意:
∠l与∠2互补不是给出的已知条件,而是分析图形得到的;
所以括号内不填已知,而填邻补角定义.
或写成:
∵∠1=180°
-∠2,∠3=180°
-∠2(邻补角定义),
∴∠1=∠3(等量代换).
例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:
∠3=∠1=40°
(对顶角相等).
∠2=180°
-40°
=140°
(邻补角定义).
∠4=∠2=140°
三、范例学习
让学生把例题中∠1=40°
这个条件换成其他条件,而结论不变,自编几道题.
变式1:
把∠l=40°
变为∠2-∠1=40°
变式2:
把∠1=40°
变为∠2是∠l的3倍
变式3:
变为∠1:
∠2=2:
9
四、课堂小结
表格中的结论均由学生自己口答填出.
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交面成的角
②有一个公共顶点
③没有公共边
相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;
两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。
邻补角
③有一条公共边
互补
五、布置作业:
课本P3练习
教学后记:
5.1.2垂线(第一课时)
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛
2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.
重点两条直线互相垂直的概念、性质和画法.
一、创设问题情境
1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?
在学生回答之后,教师指出:
“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.
2.学生观察课本P3图5.1-4思考:
固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?
其中会有特殊情况出现吗?
当这种情况出现时,a、b所成的四个角有什么特殊关系?
教师在组织学生交流中,应学生明白:
当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:
当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.
3.师生共同给出垂直定义.
师生分清“互相垂直”与“垂线”的区别与联系:
“互相垂直”指两条直线的位置关系;
“垂线”是指其中一条直线对另一条直线的命名。
如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。
4.垂直的表示法.
垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.
5.简单应用
(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.
(2)判断以下两条直线是否垂直:
①两条直线相交所成的四个角中有一个是直角;
②两条直线相交所成的四个角相等;
③两条直线相交,有一组邻补角相等;
④两条直线相交,对顶角互补.
二、画图实践,探究垂线的性质
1.学生用三角尺或量角器画已知直线L的垂线.
(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:
还能画出L的垂线吗?
能画几条?
通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:
怎样才能确定直线L的垂线位置?
在学生道出:
在直线L上取一点A,过点A画L的垂线,并且动手画出图形.
教师板书学生的结论:
经过直线上一点有且只有一条直线与已知直线垂直.
(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?
从中你又得出什么结论?
经过直线外一点有且只有一条直线与已知直线垂直.
教师让学生通过画图操作所得两条结论合并成一条,并板书:
垂线性质1:
过一点有且只有一条直线与已知直线垂直.
2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:
(1)过点P画射线MN的垂线,Q为垂足;
(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;
(3)过点P画线段AB的垂线,交线AB延长线于Q点.
学生画完图后,教师归结:
画一条射线或线段的垂线,就是画它们所在直线的垂线.
三、课堂小结
本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?
四、布置作业:
课本P7练习,P9..
5.1.2垂线(第二课时)
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。
毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离.
教学重点:
“垂线段最短”的性质,点到直线的距离的概念及其简单应用.
教学难点:
对点到直线的距离的概念的理解.
1.教师展示课本图5.1-8,提出问题:
要把河中的水引到农田P处,如何挖渠能使渠道最短?
学生看图、思考.
2.教师以问题串形式,启发学生思考.
(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?
学生说出:
两点间线段最短.
(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?
把江河看成直线L,那么原问题就是怎么的数学问题.
问题2使学生能用数学眼光思考:
在连接直线L外一点P与直线L上各点的线段中,哪一条最短?
3.教师演示教具,给学生直观的感受.
教具如图:
在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.
使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与L的位置关系如何?
用三角尺检验.
4.学生画图操作,得出结论.
(1)画出直线L,L外一点P;
(2)过P点出PO⊥L,垂足为O;
(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;
(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短.
5.师生交流,得出垂线的另一条性质.
教师板书:
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:
垂线段最短.
关于垂线段教师可让学生思考:
(1)垂线段与垂线的区别联系.
(2)垂线段与线段的区别与联系.
二、点到直线的距离
1.师生根据两点间的距离的意义给出点到直线的距离命名.
结合课本图形(图5.1-9),深入认识垂线段PO:
PO⊥L,∠POA=90°
O为垂足,垂线段PO的长度比其他线段PA1、PA2……中是最短的.
按照两点间的距离给点到直线的距离命名,教师板书:
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2……长度都不是点P到L的距离.
2、练习课本P6练习
三、课堂小结:
通过这节课,我们主要学习了什么呢?
课本P9.6,P10.P11观察与猜想.
5.1.3同位角、内错角、同旁内角
1、理解同位角、内错角、同旁内角的概念;
2、会识别同位角、内错角、同旁内角.
同位角、内错角、同旁内角的概念与识别;
识别同位角、内错角、同旁内角。
一、导入新课
前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角
如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?
在截线的同旁,被截直线的同方向(同上或同下).
具有这种位置关系的两个角叫做同位角。
同位角形如字母“F”。
∠3与∠2、∠4与∠6的位置有什么共同的特点?
在截线的两旁,被截直线之间。
具有这种位置关系的两个角叫做内错角.
内错角形如字母“Z”。
∠3与∠6、∠4与∠2的位置有什么共同的特点?
在截线的同旁,被截直线之间。
具有这种位置关系的两个角叫做同旁内角.
同旁内角形如字母“U”。
思考:
这三类角有什么相同的地方?
(1)都不相邻即不存在共公顶点;
(2)有一边在同一条直线(截线)上。
三、例题
例如图,直线DE,BC被直线AB所截,
(1)∠1与∠2、∠1与∠3、∠1与∠4各是什么角?
为什么?
(2)如果∠1=∠4,那么∠1与∠2相等吗?
∠1与∠3互补吗?
解:
(1)∠1与∠2是内错角,因为∠1与∠2在直线DE,BC之间,在截线AB的两旁;
∠1与∠3是同旁内角,因为∠1与∠3在直线DE,BC之间,在截线AB的同旁;
∠1与∠4是同位角,因为∠1与∠4在直线DE,BC的同方向,在截线AB的同方向。
(2)如果∠1=∠4,又因为∠2=∠4,所以∠1=∠2;
因为∠3+∠4=1800,又∠1=∠4,所以∠1+∠3=1800,即∠1与∠3互补。
四、课堂小结:
五、布置作业:
课本P7练习1、2题
5.2.1平行线
教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.
重点:
探索和掌握平行公理及其推论.
难点:
对平行线本质属性的理解,用几何语言描述图形的性质.
1.复习提问:
两条直线相交有几个交点?
相交的两条直线有什么特殊的位置关系?
学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:
在平面内,两条直线除了相交外,还有别的位置关系吗?
2.教师演示教具.
顺时针转动木条b两圈,让学生思考:
把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?
在这个过程中,有没有直线b与c木相交的位置?
3.教师组织学生交流并形成共识.
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.
二、平行线定义表示法
1.结合演示的结论,师生用数学语言描述平行定义:
同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.
直线a与b是平行线,记作“∥”,这里“∥”是平行符号.
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.
2.同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.
在同一平面内,两条直线只有两种位置关系:
相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.
三、画图、观察、归纳概括平行公理及平行公理推论
1.在转动教具木条b的过程中,有几个位置能使b与a平行?
本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行.
2.用直线和三角尺画平行线.
已知:
直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
3.通过观察画图、归纳平行公理及推论.
(1)由学生对照垂线的第一性质说出画图所得的结论.
(2)在学生充分交流后,教师板书.
平行公理:
经过直线外一点,有且只有一条直线与这条直线平行.
(3)比较平行公理和垂线的第一条性质.
共同点:
都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:
平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
4.归纳平行公理推论.
(1)学生直观判定过B点、C点的a的平行线b、c是互相平行.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)学生用三角尺与直尺用平推方验证b∥c.
(4)师生用数学语言表达这个结论,教师板书.
结果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c.
(5)简单应用.
练习:
如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?
请说明理由.
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.
四、作业:
课本P19.7,P20.11.
5.2.2平行线的判定
(一)
经历探索两直线平行条件的过程,理解两直线平行的条件.
探索两直线平行的条件
理解“同位角相等,两条直线平行”
一、情景导入.
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定。
二、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变。
简化图5.2-5,得图3.
图3
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说:
同位角相等,两条直线平行.
符号语言:
∵∠1=∠2∴AB∥CD.
如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。
如图,
(1)如果∠2=∠3,能得出a∥b吗?
(2)如果∠2+∠4=1800,能得出a∥b吗?
你能用文字语言概括上面的结论吗?
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说:
内错角相等,两直线平行.
∵∠2=∠3∴a∥b.
(2)∵∠4+∠2=180°
∠4+∠1=180°
(已知)
∴∠2=∠1(同角的补角相等)
∴a∥b.(同位角相等,两条直线平行)
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
同旁内角互补,两直线平行.
∵∠4+∠2=180°
∴a∥b.
四、课堂练习
1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?
依据是什么?
2、课本P162题。
五、课堂小结:
怎样判断两条直线平行?
六、布置作业:
:
P161、2题;
P174、5、6。
5.2.2平行线的判定
(二)
教学目标1、掌握直线平行的条件,并能解决一些简单的问题;
2、初步了解推理论证的方法,会正确的书写简单的推理过程。
直线平行的条件及运用
会正确的书写简单的推理过程是
一、复习导入
我们学习过哪些判断两直线平行的方法?
(1)平行线的定义:
在同一平面内不相交的两条直线平行。
(2)平行公理的推论:
如果两条直线都平行于第三条直线,那么这两条直线也互相平行。
(3)两直线平行的条件:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
二、例题
例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?
为什么?
这两条直线平行。
∵b⊥ac⊥a(已知)
∴∠1=∠2=90°
(垂直的定义)
∴b∥c(同位角相等,两直线平行)
你还能用其它方法说明b∥c吗?
方法一:
如图
(1),利用“内错角相等,两直线平行”说明;
方法二:
如图
(2),利用“同旁内角相等,两直线平行”说明.
(1)
(2)
注意:
本例也是一个有用的结论。
例2如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE∥AC,请说明理由。
分析:
由BE平分∠ABD我们可以知道什么?
联系∠DBE=∠A,我们又可以知道什么?
由此能得出BE∥AC吗?
∵BE平分∠ABD
∴∠ABE=∠DBE(角平分线的定义)
又∠DBE=∠A
∴∠ABE=∠A(等量代换)
∴BE∥AC(内错角相等,两直线平行)
用符号语言书写证明过程时,要步步有据。
1、如图,∠1=∠2=55°
,试说明直线AB,CD平行?
.
1题2题
2、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°
则a与c平行吗?
为什么?
课本P17第7题,P18第12题(提示:
画图说明)。
5.3.1平行线的性质
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
毛
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
能区分平行线的性质和判定,平行线的性质与判定的混合应用.
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:
大家把思维的指向反过来:
如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:
用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).
2.学生测量这些角的度数,把结果填入表内.
角
∠1
∠2
∠3
∠4
∠5
∠6
∠7
∠8
度数
3.学生根据测量所得数据作出猜想.
(1)图中哪些角是同位角?
它们具有怎样的数量关系?
(2)图中哪些角是内错角?
(3)图中哪些角是同旁内角?
4.学生验证猜测.
学生活动:
再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5.师生归纳平行线的性质,教师板书.
平行线具有性质:
性质1:
两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.
性质2:
两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.
性质3:
两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,
所以∠1=∠2所以a∥b.
因为a∥b,因为∠2=∠3,
所以∠2=∠3,所以a∥b.
因为a∥b,因为∠2+∠4=180°
所以∠2+∠4=180°
所以a∥b.
6.教师引导学生理清平行线的性质与平行线判定的区别.
学生交流后,师生归纳:
两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.
7.进一步研究平行线三条性质之间的关系.
教师:
大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:
考察性质1、性质2的结论发生了什么变化?
学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?
并完成说理过程,教师纠正学生错误,规范地给出说理过程.
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3.
教师说明:
这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.
学生仿照以下说理,说出如何根据性质1得到性质3的道理.
8.平行线性质应用.
讲解课本P23例题
三、巩固练习:
课本练习(P22).
课本P25..