弹性变形与塑性变形.docx

上传人:b****2 文档编号:1856844 上传时间:2022-10-24 格式:DOCX 页数:6 大小:66.29KB
下载 相关 举报
弹性变形与塑性变形.docx_第1页
第1页 / 共6页
弹性变形与塑性变形.docx_第2页
第2页 / 共6页
弹性变形与塑性变形.docx_第3页
第3页 / 共6页
弹性变形与塑性变形.docx_第4页
第4页 / 共6页
弹性变形与塑性变形.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

弹性变形与塑性变形.docx

《弹性变形与塑性变形.docx》由会员分享,可在线阅读,更多相关《弹性变形与塑性变形.docx(6页珍藏版)》请在冰豆网上搜索。

弹性变形与塑性变形.docx

弹性变形与塑性变形

一、弹性和塑性的概念

     

   可变形固体在外力作用下将发生变形。

根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:

当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。

   根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。

“弹性(Elasticity)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:

1)变形是否可恢复:

弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形则是不可恢复的,塑性变形过程是一个不可逆的过程。

2)应力和应变之间是否一一对应:

在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。

   工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。

通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。

二、弹塑性力学的研究对象及其简化模型

弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。

弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。

因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型”。

在弹性理论中,实际固体即被抽象为所谓的“理想弹性体”,它是一个近似于真实固体的简化模型。

“理想弹性”的特征是:

在一定的温度下,应力和应变之间存在一一对应的关系,而且与加载过程无关,与时间无关。

在塑性理论中,由于实际固体材料在塑性阶段的应力-应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。

常用的简化模型可分为两类,即理想塑性模型和强化模型。

  

1.理想塑性模型

   在单向应力状态下,理想塑性模型的特征如图0.1所示。

理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。

当所研究的问题具有明显的弹性变形时,常采用理想弹塑性模型。

在总变形较大、而且弹性变形部分远小于塑性变形部分时,为简化计算,常常忽略弹性变形部分,而采用理想刚塑性模型;另外,在计算结构塑性极限荷载时,也常采用理想刚塑性模型。

  

2.强化模型

   在单向应力状态下,强化模型的特征如图0.2所示。

强化模型又分为线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型三种。

 

 

   以上介绍的塑性简化模型仅仅是材料在单向应力状态下的情况,在二维和三维复杂应力状态下,塑性模型就要复杂得多了,有关这方面的概念,将在第三章中介绍。

由于在土木工程实践中,理想塑性模型应用较多,所以,本书在介绍与塑性理论相关的内容时,基本都采用了这个简化模型。

 

三、基本假定

   弹塑性力学是一门力学学科,所以,由牛顿最早总结出,其后又由拉格朗日(Lagrange)和哈米尔顿(Hamilton)等发展了的力学的一般原理在这里仍然有效,而且是构成它的理论体系的基石。

但除此而外,它还包含有新的内容,这主要是以下几个基本假定:

1.连续性假定

   所谓连续性假定,是指将可变形固体视为连续密实的物体,即组成固体的质点无空隙地充满整个物体空间。

任何物体都是由原子分子组成的。

对于固体来讲,还由于整个固体由许多结晶颗粒组成,从而更增加了固体的不连续性。

所以,仔细推敲起来,这个假设与实际情况是不相符合的。

但如果研究的是固体的宏观力学性态,则所研究的每个微小单位实际上不仅包含有相当多的原子、分子,而且还包含有相当多的晶体,这时物体便可以认为是“连续的”了。

可见,连续性假定是在一定条件下对客观事物的一个近似。

从这一假定出发进行的力学分析,得到的结果已被广泛的实验和工程实践证明是正确的。

   根据连续性假定,固体内部任何一点的力学性质都是连续的,例如密度、应力、位移和应变等,就可以用坐标的连续函数来表示(因而相应地被称为密度场、应力场、位移场和应变场等),而且变形后物体上的质点与变形前物体上的质点是一一对应的。

有了连续性假定,在进行弹塑性力学分析时,就可以利用基于连续函数的一系列数学工具,避免了数学上的极大困难。

2.均匀性假定

   所谓均匀性假定,即认为所研究的可变形固体是由同一类型的均匀材料所构成的,因此,其各部分的物理性质都是相同的,并不因坐标位置的变化而变化。

例如,固体内各点的弹性性质都相同。

根据均匀性假定,在研究问题的时候,就可以从固体中取出任一单元来进行分析,然后将分析的结果用于整个物体。

3.各向同性假定

   所谓各向同性,即假定可变形固体内部任意一点在各个方向上都具有相同的物理性质,因而,其弹性常数不随坐标方向的改变而改变。

实际上,有不少固体材料不具有这种性质,例如木材、竹材、纤维增强复合材料等,但这类材料不在本书讨论范围之内。

此外,各向同性假定也仅仅应用于弹性阶段,即使是初始各向同性的固体,在进入塑性阶段后,也成为各向异性的。

4.小变形假定

   所谓小变形假定,即假定固体在外部因素(外力、温度变化等)作用下所产生的变形,远小于其自身的几何尺寸。

根据小变形假定,可以不考虑因变形引起的固体的尺寸变化,而采用变形前的几何尺寸来代替变形后的尺寸,使得问题大为简化。

例如,在研究物体的平衡时,可不考虑由于变形所引起的物体尺寸和位置的变化;在建立应变和位移之间的关系时,就可以略去几何方程中的二阶小量等,使基本方程线性化。

5.无初应力假定

   假定所研究的可变形固体初始处于自然状态,即在外部因素(外力、温度变化等)作用之前,其内部是没有应力的。

这个假定仅仅为了表述简便而引进的,若固体内有初应力存在,则在外部因素(外力、温度变化等)作用时,其内部实际存在的应力即等于初应力加上外部因素作用所产生的应力。

   以上假定是本书所讨论的问题的基础。

此外,本书还不考虑固体与时间有关的力学性质如粘性等;同时,也不考虑固体在外力作用下的动力效应,即假设外力作用过程是一个缓慢的加载过程,在这个过程中,惯性力效应可以忽略不计(这样的加载过程称为

准静态加载过程)。

 

四、弹塑性力学问题的研究方法

   弹塑性力学作为固体力学的一个独立的分支学科,已有一百多年的历史。

它源于生产实践,反过来又直接为生产实践服务。

弹塑性力学虽然是一门古老的学科,但在土木、机械、水利、航空、材料等工程领域,随着新材料、新结构和新技术的不断发展,实践又给它提出了越来越多新的理论问题和工程应用问题,使这门古老的学科处于不断的发展中。

   工程实践中,一个具体的弹塑性力学问题的求解方法可以分为以下几类:

1)经典方法。

采用数学分析方法对弹塑性力学问题的定解方程进行求解,从而得出固体内部的应力和位移分布等。

这种方法需要求解一个偏微分方程组的边值问题,在很多情况下,求解的难度都相当大,所以,常采用近似解法,例如,基于能量原理的Ritz法和迦辽金等。

2)数值方法。

许多实际工程问题无法采用经典解法求解,而需要采用数值方法求得近似解。

在数值方法中,常用的有差分法、有限元法及边界元法等。

随着电子计算机技术的不断发展,目前,数值方法已被广泛应用于各类工程结构弹塑性力学问题的求解中。

3)实验方法。

采用机电方法、光学方法、声学方法等来测定结构部件在外力作用下的应力和应变的分布规律,如光弹性法、云纹法等。

4)实验与数值分析相结合的方法。

这种方法常用于形状非常复杂的工程结构。

例如对结构的特殊部位的应力分布规律难以确定,可以用光弹性方法测定;而对结构整体,则采用数值方法进行分析。

五、与初等力学理论的联系和区别

   弹塑性力学的主要任务是研究可变形固体在外部因素(例如外力、温度变化等)作用下的应力和变形分布规律,这也构成了弹塑性力学的基本内容。

从研究对象、研究问题的内容和基本任务来看,弹塑性力学与材料力学和结构力学都是相同的;从处理问题的方法来看,弹塑性力学与材料力学和结构力学都是从静力学、几何学和物理学三个方面进行分析。

   但从所研究问题的范围来看,它们是不同的。

材料力学仅研究杆状构件(杆件),结构力学主要研究由杆状构件组成的结构系统(杆系结构),而弹塑性力学既研究杆件,也研究诸如板和壳以及挡土墙、堤坝、地基等实体结构,因此,它的研究范围涉及土木工程结构的所有类型。

此外,材料力学和结构力学研究的问题主要局限于弹性阶段,而弹塑性力学则研究从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

   另外,从对所研究问题的简化程度来看,弹塑性力学与材料力学和结构力学也是不完全相同的。

在材料力学和结构力学里,除了采用上述的几个基本假定外,它们往往还要对杆件的应力分布和变形状态做出某些假定,因此,得到的结果有时只是粗略的近似。

但在弹塑性力学里,则无须引进那些假定,所以其得到的结果就比较精确,并可以用来校核初等力学理论(这里,初等力学理论系指采用更简化的力学模型建立起来的材料力学和结构力学理论)的结果是否准确。

例如,在材料力学里研究直梁的横力弯曲问题时,就引进了平截面的假定,由此得到直梁横截面上的弯曲应力分布是线性的;但在弹塑性力学里研究该问题时,由于无需采用平截面假定就可求得问题的解,所以,弹塑性力学的求解结果可用来校核平截面假定是否正确,以及应用该假定的条件性和局限性。

   总的来看,尽管弹塑性力学的研究对象和研究方法与初等力学理论基本相同,但它的研究范围更加广泛,得到的结果也更加精确。

弹塑性力学可以建立并给出用初等力学理论无法求解的问题的理论和方法,同时还可以给出初等力学理论可靠性与精确度的度量。

表0.1总结了弹塑性力学与初等力学理论之间的联系和区别。

表0.1弹塑性力学与初等力学理论的联系和区别

理论

联系

区别

材料力学

(1)研究对象都为可变形固体;

(2)都在连续、均匀、各向同性和小变形的假定之下,从静力学、几何学和物理学三个方面出发,建立问题的定解方程(组),求解出研究对象的应力、应变和位移;

(3)本构关系均与时间无关

研究杆件的应力、内力和位移,基本局限在线性弹性范围

结构力学

研究杆系结构的应力、内力和位移,局限在线性弹性范围

弹塑性力学

研究范围涉及土木工程结构的所有类型,求解工程结构在弹性阶段和塑性阶段的应力和位移

思考题

(注:

可编辑下载,若有不当之处,请指正,谢谢!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 少儿英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1