通信基本原理主流的通信技术短波微波卫星ATMTCPIPAAA路由和MPLS.docx
《通信基本原理主流的通信技术短波微波卫星ATMTCPIPAAA路由和MPLS.docx》由会员分享,可在线阅读,更多相关《通信基本原理主流的通信技术短波微波卫星ATMTCPIPAAA路由和MPLS.docx(11页珍藏版)》请在冰豆网上搜索。
通信基本原理主流的通信技术短波微波卫星ATMTCPIPAAA路由和MPLS
Application-driven,energy-efficientcommunicationinwirelesssensornetworks
Severalsensornetworkapplicationsbasedondatadiffusionanddatamanagementcandeterminethecommunicationtransferratebetweentwosensorsbeforehand.Inthisframework,weconsidertheproblemofenergyefficientcommunicationamongnodesofawirelesssensornetworkandproposeanapplication-drivenapproachthatminimizesradioactivityintervalsandprolongsnetworklifetime.Onthebasisofpossiblecommunicationdelaysweestimatepacketarrivalintervalsatanyintermediatehopofafixed-ratedatapath.Westudyagenericstrategyofradioactivityminimizationwhereineachnodemaintainstheradioswitchedonjustintheexpectedpacketarrivalintervalsandguaranteeslowcommunicationlatency.Wedefineaprobabilisticmodelthatallowstheevaluationofthepacketlossprobabilitythatresultsfromthereducedradioactivity.Themodelcanbeusedtooptimallychoosetheradioactivityintervalsthatachieveacertainprobabilityofsuccessfulpacketdeliveryforaspecificradioactivitystrategy.Relyingontheprobabilisticmodelwealsodefineacostmodelthatestimatestheenergyconsumptionoftheproposedstrategies,underspecificsettings.Weproposethreespecificstrategiesandnumericallyevaluatetheassociatedcosts.WefinallyvalidateourworkwithasimulationmadewithTOSSIM(theBerkeleymotes’simulator).Thesimulationresultsconfirmthevalidityoftheapproachandtheaccuracyoftheanalyticmodels.
ArticleOutline
1.Introduction
2.Relatedwork
3.Scenario
4.Communicationparadigm
5.Probabilisticmodel
5.1.Successandfailureprobabilities
5.2.Costestimation
6.Optimizationofthecostfunction
7.Alternativestrategiesforw(i)
7.1.Analysisofthestrategiesfix,lin,andmix
8.Simulations
9.Conclusions
Thechangingusageofamaturecampus-widewirelessnetwork
无线局域网络在数字化校园/社区/办公区的创新应用校园无线通信网络及其产品市场开发
WirelessLocalAreaNetworks(WLANs)arenowcommonplaceonmanyacademicandcorporatecampuses.As“Wi-Fi”technologybecomesubiquitous,itisincreasinglyimportanttounderstandtrendsintheusageofthesenetworks.Thispaperanalyzesanextensivenetworktracefromamature802.11WLAN,includingmorethan550accesspointsand7000usersoverseventeenweeks.Weemployseveralmeasurementtechniques,includingsyslogmessages,telephonerecords,SNMPpollingandtcpdumppacketcaptures.ThisisthelargestWLANstudytodate,andthefirsttolookatamatureWLAN.Wecomparethistracetoatracetakenafterthenetwork’sinitialdeploymenttwoyearsprior.
WefoundthattheapplicationsusedontheWLANchangeddramatically,withsignificantincreasesinpeer-to-peerandstreamingmultimediatraffic.DespitetheintroductionofaVoiceoverIP(VoIP)systemthatincludeswirelesshandsets,ourstudyindicatesthatVoIPhasbeenusedlittleonthewirelessnetworkthusfar,andmostVoIPcallsaremadeonthewirednetwork.
Wesawgreaterheterogeneityinthetypesofclientsused,withmoreembeddedwirelessdevicessuchasPDAsandmobileVoIPclients.Wedefineanewmetricformobility,the“sessiondiameter”.Weusethismetrictoshowthatembeddeddeviceshavedifferentmobilitycharacteristicsthanlaptops,andtravelfurtherandroamtomoreaccesspoints.Overall,usersweresurprisinglynon-mobile,withhalfremainingclosetohomeabout98%ofthetime.
ArticleOutline
1.Introduction
2.Thetestenvironment
2.1.VoiceoverIP
2.2.Clientdevices
3.Tracecollection
3.1.Syslog
3.2.SNMP
3.3.Ethernetsniffers
3.4.VoIPCDRdata
3.5.Definitions
3.6.Definingmobility
4.Changes
4.1.Clients
4.2.Traffic
5.Specificapplications
5.1.VoIP
5.2.Peer-to-peerapplications
5.3.Streamingmedia
6.Mobility
7.Relatedwork
8.Conclusionsandrecommendations
8.1.Futurework
Acknowledgements
References
Collaborativedatagatheringinwirelesssensornetworksusingmeasurementco-occurrence
并发性事件的衡量/确认和信息协同化收集无线传感器网络技术与建设
Wirelessadhocnetworksofbattery-poweredmicrosensors(WSNs)areproliferatingrapidlyandtransforminghowinformationisgatheredandprocessed,andhowweaffectourenvironment.Thelimitedenergyofthosesensorsposesthechallengeofusingsuchsystemsinanenergyefficientmannertoperformvariousactivities.AcommonactivityofmanyapplicationsofWSNsisthatofdatagathering:
foreachtimestep,gatherthemeasurementfromeachsensortoabasestation.Oftenthereisredundancyand/ordependencyamongthesensormeasurements.Howtoidentifythedataredundancy/dependencyandutilizethemonimprovingenergyefficiencyofdatagatheringhasbeenoneoftheattractivetopics.
Weproposeusingmeasurementco-occurrencetoidentifydataredundancyandanovelcollaborativedatagatheringapproachutilizingco-occurrencethat